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Abstract. We present a review of different field theory techniques that have proved
very useful in the study of quantum magnets in low dimensions. We first review
the application of the spin-wave analysis and non-linear σ-model techniques in
one and two dimensional quantum antiferromagnets. We discuss in particular the
emergence of Haldane’s conjecture for spin chains and ladders within this formalism.
We also present a brief discussion on the non-linear σ-model description for the
two-dimensional antiferromagnet in the square lattice. In a second part we review
the method of abelian bosonization and its application to the study of the XXZ
spin 1/2 chain and its generalizations, such as the dimerized chain. Non-abelian
bosonization is used to describe both SU(2) symmetric chains with arbitrary spin
S and 2 leg ladders, rederiving Haldane’s conjecture within this formalism. The
inclusion of charge degrees of freedom leading to a Hubbard or a t − J model is
also discussed. Finally, we apply the abelian bosonization approach to the study of
N-leg ladders in amagnetic field, which leads to a further extension of Haldane’s
conjecture.

6.1 Introduction

Field theory techniques have proven in the last decades to be a powerful tool
in the understanding of quantum magnetism. One of its main interests lie
in the relatively simple and universal description it can provide in studying
condensed matter system, and in particular all the exotic behaviors that can
be found in low dimensional strongly correlated systems. For example, phe-
nomena like fractional excitations or spin-charge separation, which are going
to be presented in this chapter, are some of the topics that find a very natu-
ral description in the field theory context. This approach has indeed allowed
to understand the experimental data reflecting the presence of such unusual
behaviors. Another important and more pragmatic issue is the fact that, once
a field theory is built for describing a particular model, physical quantities
such as correlation functions, the magnetic susceptibility or the specific heat
can in general be easily computed. Moreover, the effect of microscopic modi-
fications of the system, as well as the specificity of low dimensional systems,
can also be simply understood through this approach.

The field theory approach have to be considered as a fundamental tool
within the different techniques that are currently used to study condensed
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matter systems. It is complementary and in close connection to other tech-
niques such as integrable models and numerical methods. As we show in
this chapter, the Bethe Ansatz solution of the XXZ spin chain provides in-
formation about the system that is then used to construct the precise field
theory model that describes its large scale behavior. The knowledge of the
field theory allows to compute, for example, the behavior at large distances of
correlation function in a much simpler way than with integrable model techni-
ques. Finite size scaling analysis is another subject in which field theory have
proven to be very useful, providing a natural link with numerical techniques
also commonly used in condensed matter physics.

This chapter provides a review of field theory techniques that are used in
the study of quantum magnets in low dimensions. In the first part we provide
an overview of the spin-wave analysis in one and two dimensional quantum
antiferromagnets. We then concentrate on the derivation of the non-linear
σ-model that describes the low energy dynamics of spin S chains within the
large S approach. The behavior of this model with and without a topological
term, giving rise to Haldane’s conjecture, is discussed. The results obtained
in the context of spin-wave analysis and the non-linear σ-model are then
generalized to the case of spin ladders. A brief discussion on the applications
of this description for the two-dimensional antiferromagnet in the square
lattice closes the first part of this chapter.

In the second part we review the method of abelian bosonization and
apply it to the study of the XXZ spin 1/2 chain in the presence of a ma-
gnetic field, which leads to the Luttinger liquid picture. We discuss how the
microscopic data of the lattice model are related to the field theory para-
meters. We analyze in detail the computation of thermodynamic quantities
and correlation functions within the bosonization method as well as certain
modifications of the XXZ chain. The particularities and non-abelian boso-
nization description of the SU(2) Heisenberg point are also discussed. We
then briefly treat the generalization of those results to the Hubbard and t−J
models to illustrate the inclusion of charge degrees of freedom. Non-abelian
bosonization is also applied to the study of the two leg S = 1/2 SU(2) sym-
metric spin ladder and to higher spin one-dimensional chains where it is used
to rederive Haldane’s conjecture. Finally, we apply the abelian bosonization
approach to the study of N-leg ladders, which leads to a further extension of
Haldane’s conjecture.

The general overview presented here aims not only at providing a descrip-
tion of the usual tools used in field theory for condensed matter physics, but
also to show to the reader how this approach is in almost symbiotic connec-
tion with the other areas described in this book. We also mention in this
chapter many topics that to date are still open questions with the hope that
future progresses in field theory will help to elucidate those issues.
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6.2 Path Integral for Spin Systems

Let us assume that we have an arbitrary number of spins {Sn} labeled by the
generic site index n without, for the moment, making any further supposition
about the geometry and dimensionality of such an array of spins. These
operators satisfy an SU(2) algebra on each site

[Sx
n, S

y
n] = iSz

n and S2
n = S(S + 1), (6.1)

We assume also that the system has a Hamiltonian H ({Si}) that we do
neither need to specify for the moment. The idea is to define a path integral
for such a system as proposed by Haldane (see for example [1], [2]). To avoid
making heavier the notation, let us assume that we have first a single spin.
Following [2], in the 2S + 1 dimensional Hilbert space, we define the states:

|n〉 = eiθ(ẑ×n)·S |S, S〉 (6.2)

where n is a unit vector forming an angle θ with the quantization axis (z)
and |S, S〉 is the highest weight state. A straightforward calculation shows
that:

〈n|S|n〉 = Sn. (6.3)

One can also show that the internal product of two such states gives:

〈n1|n2〉 = eiSΦ(n1,n2,ẑ)
(

1 + n1 · n2

2

)S

(6.4)

where Φ(n1,n2, ẑ) is the solid angle viewed from the origin formed by the
triangle with vertices in n1, n2 and ẑ. Note that Φ(n1,n2, ẑ), as a solid
angle, is defined modulo 4π. This ambiguity has however no importance in
(6.4) because of the periodicity of the exponential. With this over-complete
basis, one can also write the identity operator in the Hilbert space:

I =
∫ (

2S + 1
4π

)
d3n δ(n2 − 1)|n〉〈n| (6.5)

which can be obtained by using the properties of the rotation matrices

DS
M,M ′(n) = 〈S,M |eiθ(ẑ×n)·S|S,M ′〉

in the spins S representation :

2S + 1
4π

∫
d3n δ(n2 − 1)DS∗

M,M ′(n)DS
N,N ′(n) = δM,NδN ′,M ′ .

Imagine now that we want to compute the partition function

Z = Tr{e−βH}
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seen as the evolution of the system in imaginary time with periodic boundary
conditions. We can decompose the evolution in imaginary time into N infi-
nitesimal steps of length δt, with N → ∞, Nδt = β. using then the Trotter
formula:

Z = lim
N→∞

(
e−δtH

)N

an inserting an identity at each intermediary step, we obtain:

Z = lim
N→∞

(
2S + 1

4π

)N
(

N∏

a=1

∫
d3na δ(n2

a − 1)〈n(ta)|e−δtH |n(ta+1)〉
)
.

If now, as in the standard path integral construction, we only keep in each
infinitesimal step the first order in δt:

〈n(ta)|e−δtH |n(ta+1)〉 =
[
〈n(ta)|n(ta+1)〉+ δt〈n(ta)|H|n(ta)〉+O(δt2)

]

and we formally define the path integral measure:

∫
Dn = lim

N→∞

(
2S + 1

4π

)N
(

N∏

a=1

∫
d3na δ(n2

a − 1)

)

using (6.4) we can write the partition function as:

Z =
∫
Dn e−S[n] (6.6)

with

S[n] = −iS
∑

a

Φ(n(ta),n(ta+1), ẑ)

− S
∑

a

log
(

1 + n(ta) · n(ta+1)
2

)
+ δt

∑

a

〈n(ta)|H|n(ta)〉. (6.7)

Since in the computation of the partition function we used periodic boundary
conditions, namely: n(0) = n(β), and if we suppose that the path described
by n(t) is smooth 3, we see that

∑
a

Φ(n(ta),n(ta+1), ẑ) describes the solid

angle, or the area in the unit sphere bounded by the curve n(t), A{n(t)}.
As before, the independence of the partition function of the choice of the
quantization axis or the ambiguity in the definition of the solid angle is a
consequence of the 4π invariance of the phase factor. In (6.7), the second
term is of order (δt)2, the imaginary time continuum limit of this action is
then :

S[n] = −iSA{n(t)}+
∫ β

0
dt〈n(t)|H|n(t)〉. (6.8)

3 This assumption is actually delicate, as in the standard Feynmann path integral,
see [2] and references therein, but we ignore such technical details here.
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Equation (6.8) is the main result of the path integral description for magnetic
systems which we can now apply to spins chains, ladders and two-dimensional
antiferromagnets.

6.3 Effective Action for Antiferromagnetic Spins Chains

Let us assume now that we have a collection of spins S2
i = S(S + 1) forming

a one dimensional array (chain) with the Hamiltonian:

H = J
∑

k

Sn · Sn+1 (6.9)

with J > 0. (6.9) is just the one-dimensional Heisenberg antiferromagnet.
The action (6.8) takes then the explicit form:

S[{nn}] = −iS
∑

n

A{nn(t)}+ JS2
∫ β

0
dt
∑

n

nn(t) · nn+1(t). (6.10)

In order to take the continuum limit in the spatial direction, we need to
identify the low energy, large scale degrees of freedom that can be considered
as slowly varying fields in the action. We can, for this, make use of the known
results from spin wave theory from which we know that low energy modes
are found at zero and π momenta (see also below for the generalization to
the case of ladders). We can then write the ansatz

nn = (−1)n
√

1− a2l2n mn + aln (6.11)

with a the lattice spacing and m2
n = 1. This result, which is valid for large

S, is just telling us that the large scales behavior of the system is governed
by fields representing a staggered and a quasi-homogeneous variation of the
magnetization. The latter field, playing the rôle of angular momentum for n is
chosen to have dimension of density and is responsible of a net magnetization
which is supposed to be small. To order a2, the relation n2

n = 1 is equivalent
to mn · ln = 0. We can now introduce this form for the field nn in (6.10)
and keep only the lowest order in a to take the continuum limit. For the area
term, by noticing that A{−n(t)} = −A{n(t)}, we can group terms two by
two and write the sum as:

∑

i

A{n2i(t)}+A{n2i−1(t)} =

∑

i

A{
√

1− a2l22im2i(t) + al2i(t)}

−A{
√

1− a2l22i−1m2i−1(t)− al2i−1(t)}.
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We can now use the expression relating the difference in the areas produced
by curves n(t) and n(t) + δn(t):

A{n(t) + δn(t)} = A{n(t)}+
∫ β

0
dt δn(t). (∂t(n(t))× n(t))

and we obtain
∑

i

A{n2i(t)}+A{n2i−1(t)} =

−a
∫ β

0
dt
∑

i

(
∆

a
(m2i(t)) + 2l2i(t)

)
. (m2i(t)× ∂t(m2i(t))) +O(a2)(6.12)

where we have used that m2i−1(t) = m2i(t)−∆(m2i(t)) +O(a2).
In the same spirit, and omitting constant terms, the second term in (6.10)

can be written as:

JS2

2

∫ β

0
dt
∑

i

[
(n2i(t) + n2i+1(t))

2 + (n2i+1(t) + n2i+2(t))
2
]

and the lowest order in a gives:

JS2a2

2

∫ β

0
dt
∑

i

{[
−∆
a

m2i(t) + 2l2i

]2
+
[
∆

a
m2i+1(t) + 2l2i+1

]2}
,

which, still to lowest order in a can also be written as:

JS2a2
∫ β

0
dt
∑

i

[
(
∆

a
m2i(t))2 + 4l22i

]
.

We can now collect all the pieces together and take the continuum limit
by replacing ∆

a → ∂x, 2a
∑

i →
∫
dx (the factor of 2 arises from the doubling

of the chain index). We also take the limit of zero temperature T → 0. We
obtain for the total action:

S[m, l] =
JS2a

2

∫
dx dt

[
(∂x(m(x, t))2 + 4l(x, t)2

]

+
iS

2

∫
dxdt (∂x(m(x, t)) + 2l(x, t)) · (m(x, t)× ∂t(m(x, t))) . (6.13)

We immediately notice that this action is quadratic in the variable l. We
can then integrate out this variable and obtain the final result:

S[m] =
∫

dxdt
1
2g
(
v(∂xm)2+

1
v
(∂tm)2 +

iθ

8π
εijm · (∂im× ∂jm)

)
(6.14)
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with g = 2/S the coupling constant, v = 2aJS the spin wave velocity and
the topological angle θ = 2πS. If we want the action to be finite in an infinite
system and at zero temperature, we have to impose that m tends to a fixed
vector m0 at infinity in space and imaginary time. By making all the points
at infinity equivalent, we are just saying that our space time is equivalent
to a sphere S2. Since in each point of the space time m can also be viewed
as an element of S2, the mapping m(x, t) corresponds to an embedding of
the sphere into itself. Such embeddings are classified by what is called the
second homotopy group of the sphere Π2(S2) = Z [3]. To each embedding
corresponds an integer (element of Z) given by the Pontryagin index:

1
8π

∫
dxdt εijm · (∂im× ∂jm) ∈ Z (6.15)

where we immediately recognize in this expression the last term of the action
(6.14). We can then conclude from this result that for integer S, the imaginary
part of the action in (6.14) (which we will call the topological term) is always
a multiple of 2π and plays no role at all, while for half integer spins, as we
will see, the situation is completely different.

6.4 The Hamiltonian Approach

The result (6.14) can also be derived using a Hamiltonian approach; we follow
here the derivation given in [4], [5]. Let us group our spin operators two by
two and define the variables L and M through

S2i = aLi − SMi

S2i+1 = aLi + SMi. (6.16)

These relations can be inverted:

Li =
1
2a

[S2i+1 + S2i]

Mi =
1

2S
[S2i+1 − S2i] (6.17)

and one can then easily show using (6.1) that these variables satisfy the
constraints:

a2L2
i + S2M2

i = S(S + 1) ; Li ·Mi = 0 (6.18)

and the algebra:

[La
i , L

b
j ] =

i

2a
εabcδi,jL

c
i ;

[La
i , L

b
j ] =

i

2a
εabcδi,jM

c
i ;
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[La
i , L

b
j ] ==

ia

2S2 ε
abcδi,jL

c
i . (6.19)

We can rewrite the Hamiltonian (6.9) as:

H = J
∑

i

[S2i · S2i+1 + S2i+1 · S2i+2]

= J
∑

i

[
−S2M2

i + a2L2
i + a2Li · Li+1+

aS (Mi−1 · Li − Li ·Mi+1) +
S2

2
(Mi −Mi+1)2 − S2M2

i

]
(6.20)

where the index of the first term of the last line has been shifted by one for
convenience. To make contact with the result of the preceding section, we
take the continuum limit by keeping in the Hamiltonian only the terms of
order a2. We start by defining the variable x as:

Mi →M(x) ; Mi±1 →M(x)± 2a∂x(M(x)) +O(a2).

Using then the identification

2a
∑

i

→
∫

dx ;
1
2a
δi,j → δ(x− y)

and the relation (6.18), we obtain the continuous Hamiltonian (we omit con-
stant terms):

H =
v

2

∫
dx

[
g

(
L− θ

4π
∂x(M)

)2

+
1
g

(∂x(M))2
]

(6.21)

where g, v and θ have already been defined. The key point is to realize that
for S →∞, the constraint and the algebra become:

M2(x) = 1 ; L(x) ·M(x) = 0 (6.22)

[La(x), Lb(y)] = iεabcδ(x− y)Lc(x) ; [La(x),M b(y)] = iεabcδ(x− y)M c(x)

[Ma(x),M b(y)] = 0 (6.23)

and in this limit we can view L(x) as the angular momentum density M(x)×
Ṁ(x) associated to the normalized field M (note the similarity between this
operator relation and the ansatz (6.11)) . Upon the replacement m → M in
(6.14), and using an appropriate parametrization for this normalized field (as,
for example, the azimuthal angles in the sphere), one can easily show that
(6.21) is the Hamiltonian associated to the Lagrangian of the action (6.14),
which completes our alternative derivation of the non-linear sigma model
description of Heisenberg antiferromagnetic chains in the large S limit.
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6.5 The Non-linear Sigma Model
and Haldane’s Conjecture

Let us first consider the case of integer spins, where the topological term is
absent. We then have the usual O(3) non linear sigma model (NLSM)4 for
which we can write the partition function as:

Z =
∫

D{m}δ(m2 − 1)e−
∫

dxdt 1
2g ((∂xm)2+(∂tm)2) (6.24)

and where we have set the sound velocity v to unity. At the classical level, the
action in (6.24) is scale invariant. Since there is no apparent scale parameter
in the model, one would be tempted to conclude that the correlation func-
tion of this model are algebraically decaying, a phenomenon typical of scale
invariant systems. We will see however that fluctuations change dramatically
this scenario [6]. To see this, we start by expressing the δ function in (6.24)
in terms of a Lagrange multiplier:

Z =

c+i∞∫

c−i∞

D{λ(x)}
∫

D{m(x)}e−
∫

dxdt 1
2g ((∂xm)2+(∂tm)2+λ(m2−1)). (6.25)

In order to understand the qualitative behavior of (6.24), we are going to do
an approximation which consists in replacing the integral in λ by the maximal
value of the integrand:

Z ∼
∫

D{m(x)}e−
∫

dxdt 1
2g ((∂xm)2+(∂tm)2+λm(m2−1)), (6.26)

where the optimal value λm is assumed to be a constant. As we will see below,
such an approximation is valid if we generalize our model to the O(N) non-
linear sigma model and consider the limit N � 1. The approximate partition
function in (6.26) has the advantage of being Gaussian and then all physical
quantities can be easily calculated.

To obtain λm, we integrate over m(x) in (6.25):

Z =

c+i∞∫

c−i∞

D{λ(x)}e 1
2g (

∫
λ(x,t)dxdt− N

2 log(det{−�+λ(x,t)})), (6.27)

where # is the two dimensional Laplace operator. It is now apparent that for
N � 1 we can estimate this integral by a saddle-point approximation. The
condition for maximizing the integrand is:
4 The historical origin of this name comes from the way the field was written in

some choice of variables where the O(N) symmetry is realized non-linearly.
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1
2g

=
N

2
δ

δλ(x, t)
log(det{−#+ λ(x, t)}) (6.28)

And, again, under the assumption of λm being constant, we get:

1 = gNTr{ 1
−#+ λm

}

= gN

∫
d2p

4π2

1
p2 + λm

=
gN

4π
log(Λ2/λm) (6.29)

where Λ is an ultraviolet momentum cut-off. From (6.29) we obtain the op-
timal value:

λm = Λ2e− 4π
gN (6.30)

which indicates us that fluctuations have dynamically generated a mass term
in our original action. Indeed, by using (6.26) one easily sees that correlation
functions are now exponentially decaying with the distance.

The arguments we used to derive the result (6.30) are strictly speaking
valid for N � 1. It is however well established by many techniques that
this result is indeed qualitatively correct for N ≥ 3. The non-linear sigma
model is integrable even at the quantum level and an exact S matrix has
being proposed [7]. An intuitive way to understand this result is by seeing
(6.24) as the partition function of a classical magnet in the continuum. In
such an interpretation, the coupling g plays the role of temperature. Another
approach to understand this phenomenon is given by the renormalization
group analysis. We refer the reader to [6], [8] for a detailed presentation of
the renormalization group techniques and give here the main steps of the
procedure. The idea is to decompose the field in slowly and fast fluctuating
parts; we then integrate over the fast degrees of freedom to obtain an effective
action with renormalized parameters. Following [6] we start by writing our
field as:

m =
√

1−
∑

i

σ2
i ms +

N−1∑

i=1

σiei, (6.31)

where m2
s = 1 and the vectors ei form an orthonormal basis for the space

orthogonal to ms, and the fields σi are the fast fluctuating degrees of freedom.
Keeping only the quadratic terms in the fields σi, the action (6.14) becomes:

∫
dxdt

1
2g




∑

µ

∑

i,j

(∂µσi − ∂µ(ei) · ejσj)2

∑

µ

∑

i,j

(∂µms).ei(∂µms).ej(σiσj −
∑

k

σ2
kδij) +

∑

µ

(∂µms)2



 . (6.32)
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We can now integrate over the fast degrees of freedom in the momentum shell
Λ− δΛ < p < Λ, or in real space between scales L and L + δL to obtain an
effective coupling for the slow part of the action

∑
µ(∂µms)2. To lowest order

in g, the contribution to each component (∂µmi
s)

2, of the slow part of the
action is given by the one point function:

〈σiσi − (N − 1)
∑

k

σ2
k〉

and after some algebra, we can do the integration to obtain the new coupling:

1
g + δg

=
1
g
− (N − 2)g2

Λ∫

Λ−δΛ

d2p

(2π)2p2 . (6.33)

An important observation is that the term ∂µ(ei) · ej does not contribute
to this result. The way to understand this is to notice that the action is
invariant under rotations in the N − 1 dimensional space αi → Mijαj with
αi = σi, (∂µms)·ei and the term ∂µ(ei)·ej behaves under this transformation
as a gauge field. Since

∑
µ(∂µms)2 is rotationally invariant, the lowest order

contribution we can have in the effective action arising from ∂µ(ei) · ej is the
(gauge) invariant term

∑
µ,ν,i,j

(∂µ(ei) · ∂ν(ej) − ∂µ(ei) · ∂ν(ej))2. This gauge

invariant term give rise to non-logarithmic divergences which can be shown
to give no contribution in (6.33). From this result we obtain the β function:

β(g) = − dg

dln(Λ)
=

dg

dln(L)
=

N − 2
2π

g2 +O(g3). (6.34)

That is, by going to large scales g flows to strong coupling indicating a regime
of high temperature where the system is disordered and with a finite corre-
lation length. Of course the original cut-off Λ and coupling g depend on the
microscopic details of the theory, but if we imagine varying such parameters
in our field theory in such a way to keep the dynamically generated scale
constant, the constant λ satisfies the equation:

∂λ

∂Λ
+
∂λ

∂g

∂g

∂Λ
= 0 . (6.35)

Using (6.34) and assuming that λ = Λ2f(g), we obtain:

λ = Λ2e− 4π
g(N−2) (6.36)

which coincides with (6.30) for N →∞. Remember that our case of interest
corresponds to N = 3.

The case of half-integer spins is very different. We have to remember that
in this case the action (6.14) contain the topological term which contributes
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as a destructive phase term in the computation of the partition function. The
coupling constant still flows to the strong coupling regime, but the topologi-
cal term is protected against renormalization because of its discrete nature.
Recalling that the coupling constant g = 2/S is inversely proportional to the
spin S, the flow to strong coupling can be interpreted as a large scale behavior
of the system with smaller spins. Since the topological term remains present
at large scale, one can conclude that the large scales behavior of half integer
spin chains corresponds to the one of spin 1/2 chain, which is known to be
gapless. Shankar and Read have given further support to this conclusion [9].
This drastic difference between integer and half integer antiferromagnetic
spin chains is known as the Haldane conjecture [10].

6.6 Antiferromagnetic Spin Ladders

The techniques we have used so far to obtain the large scales behavior of Hei-
senberg antiferromagnetic chains can be generalized to other geometries. The
closest example is given by the spin ladder systems. Imagine an array of spins
forming a strip composed of N chains. Neighboring spins belonging to the
same chains are supposed to have a coupling J , as before, while neighboring
spins of adjacent chains have a coupling given by J ′. We assume also that
both couplings J and J ′ are positive. The spins on this ladder are labelled
by the chain index n and the row index a, 1 ≤ a ≤ N . N is to be considered
as fixed and finite while the number of spins along the chains diverge in the
thermodynamic limit. The analysis presented in this section follows the lines
of [5].

At the classical level, the lowest energy configurations are given by a Néel
order, say, in the ẑ direction given by:

Sa,n = (−1)a+nSẑ. (6.37)

The equations of motion for a spin belonging to an intermediate row is given
by:

dSa,n

dt
= −Sa,n × [J (Sa,n−1 + Sa,n+1) + J ′ (Sa−1,n + Sa+1,n)] , (6.38)

(for the spins belonging to the edges rows, the a − 1 or a + 1 terms are
absent). We can now use our experience in spin wave analysis to identify the
low energy excitations around this Néel state. We linearize (6.38) and write
the ansatz:

Sx
a,n + iSy

a,n = ei(wt+nq) (Aa(q) + (−1)a+n+1Ba(q)
)
. (6.39)

Note that the example of decoupled chains is a particular case of this model.
With the ansatz proposed here one must of course recover the well-known
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results for the simple chain in the limit J ′ → 0. The resulting eigenvalue
problem shows that there are N − 1 families of solutions, which for J ′ �= 0
have a gapped spectrum (one can show however that such modes become
gapless for the case of decoupled chains J ′ = 0). There is only one family of
excitations with vanishing energy at q = 0 and q = π. These modes are the
counterpart of the gapless modes of the single Heisenberg chain and give us
a clue of the form of the slowly varying fields in a field theory approach.

The solution for small q is given by Ba = B and Aa ∝ q
∑
b

L−1
ab with

L =





4J + J ′ J ′ 0 ..
J ′ 4J + 2J ′ J ′ ..
0 J ′ 4J + 2J ′ ..
.. .. .. ..



 . (6.40)

We can now work out the path integral description of the low energy physics
of the ladder system. We refer the reader to [5] for the Hamiltonian derivation
of it and the subtle differences between the path integral and Hamiltonian
results. By using our basis of states |n〉 in (6.2), we write the action of the
ladder as:

S[{na,n}] = −iS
∑

a,n

A{na,n(t)}+ JS2
∫ β

0
dt
∑

n,a

na,n(t) · na,n+1(t)

+J ′S2
∫ β

0
dt
∑

n

N−1∑

a=1

na,n(t) · na+1,n(t)(6.41)

and, inspired by the spin wave result, we propose as an ansatz the genera-
lization of (6.11):

na,n = (−1)n
√

1− a2α2
al(n)2 m + aαal(n) (6.42)

where αa = Aa/(
∑
a
Aa). Note that excitations along the transverse direc-

tion of the ladder are all supposed to be of high energy. This is due to the
fact that N is kept finite implying a finite difference in the energy levels of
transverse excitations. Then, the effective low energy degrees of freedom are
one-dimensional in nature. The procedure is then standard: we insert expres-
sion (6.42) into (6.41) and work out the continuum limit. The final result is
again the effective action (6.14) with the parameters:

g =
1

S
√∑

a,b

L−1
ab

; v =
SJa√∑
a,b

L−1
ab

; θ = 2πS
N∑

a=1

(−1)a. (6.43)

The important result here is the contribution to the topological term which
is easy to understand by noticing that, with the assumption we made in
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(6.42), each chain will contribute to it with a term 2πS(−1)a. We then see
that only for an odd number of coupled chains, and for half-integer spin will
the topological term give rise to a gapless behavior of our system at zero
temperature. To summarize, the Non-Linear Sigma model approach predicts
that the large scale behavior of the system is governed by the product SN :
if it is an integer, the system is expected to be gaped, while for half-integer
values, the system is gapless.

6.7 Chains with Alternating Bonds

As another example of the applications of the NLSM technique, we can consi-
der the study of spin chains with alternating couplings, or dimerization [4] [5]
with the Hamiltonian:

J
∑

i

[(1 + δ)S2i(t) · S2i+1(t) + (1− δ)S2i+1(t) · S2i+2(t)] . (6.44)

We can use both the path integral or Hamiltonian approach to obtain the
effective action in the continuum limit. Within this last approach, we use
again the operators (6.17). It is a straightforward computation to show that
the Hamiltonian is now:

H = J
∑

i

[
−(1 + δ)S2M2

i + a2(1 + δ)L2
i + a2(1− δ)Li · Li+1+

aS(1− δ) (Mi−1 · Li − Li ·Mi+1) +
S2

2
(1− δ)(Mi −Mi+1)2 − S2(1− δ)M2

i

]
(6.45)

and completing squares and taking the continuum limit as before, we obtain
(see [4]):

H =
ṽ

2

∫
dx



g̃
(

L− θ̃

4π
∂x(M)

)2

+
1
g̃

(∂x(M))2


 (6.46)

with now g̃ = 2/(S
√

1− δ2), ṽ = 2aJS
√

1− δ2 and θ̃ = 2πS(1− δ). Building
the corresponding Lagrangian we observe that the resulting sigma model
has now a topological term with a factor of 1 − δ in front. This result can
be easily obtained also within the path integral approach. The topological
term changes sign under a parity transformation, as well as time reversal and
m → −m. In the non–dimerized case (which is parity invariant) this fact
has no importance since the factor in front of it is a multiple of π and an
overall sign has no effect in the computation of the partition function. The
situation is different in the presence of dimerization. Now the total action is
not anymore invariant under such transformation.
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One important question is what is the large scales behavior of the NLSM
in the presence of a topological term with coefficient different from ±π. We
refer the reader to [4] to a discussion about this delicate issue and just anno-
unce the commonly believed scenario: the NLSM is massless only for θ = ±π.
A result in support of the idea that for a nontrivial θ we obtain a massive
behavior is the fact that a spin 1/2 chain with dimerization has a gap in
the spectrum, as we are going to see below in the context of bosonization.
Based in this belief we can then conclude that by varying the parameter δ
one should encounter 2S + 1 gapless points in a spin S chain. Such results
can also be extended to the case of spin ladders where different kinds of di-
merizations are conceivable [5], and where, again, one recover a NLSM with
a non-integer factor for the topological term.

6.8 The Two-Dimensional Heisenberg Antiferromagnet

We start our discussion on two-dimensional antiferromagnets by considering
spins S located at the vertices of a square lattice Si,j , where i and j label
the position on the lattice for each spin. The Hamiltonian is:

H = J
∑

i,j

Si,j · (Si+1,j + Si,j+1). (6.47)

We are going to consider again the T → 0 limit. Within the path integral
approach, the effective action is given by:

S[{ni,j}] = −iS
∑

i,j

A{ni,j(t)}+ JS2
∫

dt
∑

i,j

ni,j(t) · (ni+1,j(t) + ni,j+1(t)).

(6.48)

We are going again to make use of the result of spin wave theory and assume
that, for large S, the low-energy physics of the system can be described by
the ansatz:

ni,j = (−1)i+j
√

1− a2l2i,j mi,j + ali,j . (6.49)

Before obtaining explicitly the effective action arising from this ansatz,
let us discuss first which kind of topological terms one can expect in the
computation of the partition function. In order to have a finite value for
the action, we assume again that the field configuration tends to the same
constant field at spatial and imaginary time infinity. By associating all the
points at infinity, the space-(imaginary)time manifold corresponds now to S3.
On the other hand, the order parameter field is still en element of S2. The
possibility of having configurations of the spin field with non-trivial winding
is given by the homotopy group Π2(S3) = 1 which turns out to be trivial.
One can then already see that the specifics in the physics of one-dimensional
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systems are not recovered in the square lattice. The situation can be more
subtle for frustrating systems, like the Heisenberg antiferromagnet in the
triangular lattice. In this case the classical Néel configuration is obtained by
imposing that adjacent spins in each triangle form a planar configuration
with a relative angle of 2π/3. The orientation of such triad is characterized
by an element of SO(3): we have to specify a vector orthogonal to the plane
of the triad and the angle that forms on this plane the triad with respect to
a reference configuration. Since Π2(SO(3)) = Z, we can expect in this case
to have non-trivial contributions to the partition function from a topological
origin. A microscopic derivation of the effective action has revealed indeed the
possibility of such kind of non-trivial contributions [11], but its consequences
in the large scale physics are much less easy to understand than in the one-
dimensional case.

Let us now resume our discussion about the antiferromagnet in the square
lattice, where topology can still play a rôle. Any field configuration at a given
time can be characterized by an integer corresponding to the Pontryagin index
that we have discussed before:

1
4π

∫
dxdym · (∂xm× ∂ym). (6.50)

If the field m(x, y, t) varies smoothly with the time, this quantity keeps the
same integer value all along the time. This quantity corresponds to the total
charge of textural defects of the field configuration, called skyrmions [12].
The presence of such a term in the effective action would have dramatic
consequences on the statistic of such skyrmions. Haldane [13] has shown
however that the effective action of the square lattice antiferromagnet has
no such topological terms. He considered however the possibility of singular
configurations of the field allowing for tunneling processes that change this
integer index. Such a kind of singularity, called a hedgehog, can play a rôle
if the system is disordered and Haldane found a non-trivial S dependence of
that term on the basis of a microscopic derivation of the effective action. We
limit ourselves in this discussion to the case of non-singular configurations of
the field and derive the effective action arising from the ansatz (6.49).

The part arising from the Hamiltonian can be treated in the same spirit
as in the one-dimensional case and we have:

JS2
∫

dt
∑

i,j

ni,j(t) · (ni+1,j(t) + ni,j+1(t)) =

JS2

2

∫
dt




∑

i,j

(ni,j(t) + ni+1,j(t))
2 +

∑

i,j

(ni,j(t) + ni,j+1(t))
2





which in the continuum limit gives:

JS2

2

∫
dt

∫
dx

∫
dy
(
(∂xm)2 + (∂ym)2 + 8l2

)
.
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The outcome of the area term is a bit more subtle. We start by grouping the
contribution of spins two by two along, say, the x̂ direction, as we did in the
one-dimensional case and we get:

−a
∫

dt
∑

i,j

(
(−1)j ∆i

a
(m2i,j(t)) + 2l2i,j(t)

)
· (m2i,j(t)× ∂t(m2i,j(t))) +O(a2)

(6.51)

where ∆i stands for the difference (or lattice derivative) in the i (x̂) direction.
We know that the term

∫
dt
∑

i

(
∆i

a
(m2i,j(t))

)
· (m2i,j(t)× ∂t(m2i,j(t)))

is going to give rise to the integer associated to the Pontryagin index in the
x-t space-time slice. Since the field m is assumed to be slowly varying and
non-singular, this integer must be the same for each row j. Then, because of
the alternating sign in the sum in (6.51), this term cancels. In the continuous
limit, the only contribution from the area term is then:

iS

a

∫
dt

∫
dx

∫
dyl(x, y, t) · (m(x, y, t)× ∂t(m(x, y, t))) .

Collecting all the terms together and, again, integrating over the field l we
obtain the final result for the action:

S =
1
2g

∫
dxdydt

(
v
[
(∂xm)2 + (∂ym)2

]
+

1
v
(∂tm)2

)
(6.52)

with g = 2
√

2a/S, v = 2
√

2aJS. To understand the behavior of this action,
we start by noticing that the partition function is equivalent to that of a con-
tinuous magnet in three dimensions. Again g plays the rôle of a temperature
and one expects the existence of some critical value below which the O(3)
symmetry is broken.

To see this in more detail, we proceed as in the (1+1) dimensional case
and consider the O(N) non-linear sigma model. The procedure is strictly the
same, and we obtain again the saddle-point equation:

1 = gNtr{ 1
−#+ λm

}

= gN

∫
d3p

(2π)3
1

p2 + λm
(6.53)

where now the integral over momenta is three-dimensional. As in the (1+1)
case, this integral is divergent at high momenta and has to be regularized by
a cut-off Λ ∼ 1

a . By a careful inspection of the integral (6.53), one can see
that there is a real and strictly positive solution for λm for any value of g
bigger than the critical value gc obtained from:
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1 = gcN

∫
d3p

(2π)3
1
p2 =

gcNΛ

2π2 . (6.54)

For any g > gc the scenario is similar to the (1+1) dimensional case where
the symmetry is unbroken and excitations acquire a gap.

If g < gc, there is no real and positive solution of (6.53). This phase
corresponds to the broken symmetry phase we mentioned above. This scena-
rio is also supported by a one loop computation of the β function in 2 + ε
dimensions (and setting ε = 1 here):

β(g) = −g +
N − 2

2π
g2 + ...

(recall that now g is a dimension-full constant). This result suggests that there
is a critical value of g which is the only point in which the system is truly
scale invariant. Below that value the system flows to the low temperature
phase and above it it flows to the high temperature phase.

For very small g, and taking back N = 3 we can describe our field as a
small deformation of an homogeneous vector, say, in the ẑ direction:

m(x, y, t) = (
√

1− α2
1 − α2

2, α1(x, y, t), α2(x, y, t))

and the remaining action

S ∼ 1
2g

2∑

a=1

∫
dxdydt

(
c
[
(∂xαa)2 + (∂yαa)2

]
+

1
c
(∂tαa)2 + ...

)
(6.55)

is simply the one of two massless Goldstone modes. We thus conclude that
there must be a critical value of the coupling constant, proportional to a that
separates the ordered from the disordered phase. This means that there must
be a critical value of the spin magnitude Sc above which the system is orde-
red at zero temperature. Since we have by now numerical and experimental
evidence that the spin 1/2 Heisenberg antiferromagnet has an ordered ground
state, we then conclude that it is ordered for all values of S at T = 0.

6.9 Bosonization of 1D Systems

6.9.1 XXZ Chain in a Magnetic Field: Bosonization
and Luttinger Liquid Description

We consider now a generalization of the one-dimensional SU(2) Hamiltonian
(6.9) for S = 1/2, by including an anisotropy term in the z direction, which
we parameterize by ∆, and an external magnetic field h applied along the
z-axis. The resulting model is known as the XXZ chain which, being inte-
grable, allows for a detailed analysis of the low energy theory using abelian
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bosonization. This simple theory also serves as a starting point for the study
of many different situations which can be described by its perturbations as
the case of modulated chains or N leg ladders made up of XXZ chains. Given
its importance, we present the bosonization analysis in detail.

The lattice Hamiltonian is given by

H latt
XXZ = J

∑

n

(
1
2
(
S+

n S
−
n+1 + S−

n S
+
n+1

)
+∆Sz

nS
z
n+1

)
− h

∑

n

Sz
n . (6.56)

where we consider J > 0. S±
n = Sx

n ± iSy
n are the spin raising and lowering

operators where Sx,y,z
n are the spin operators acting on site n and satyisfying

the SU(2) algebra (6.1). In this section we restrict ourselves to S = 1/2.
This model has a U(1) invariance corresponding to rotations around the

internal z axis for generic ∆. For ∆ = 0 we have the XY model which can be
solved exactly using the Jordan-Wigner transformation and it is the starting
point of the bosonization procedure that we describe below. The full SU(2)
spin symmetry is recovered at ∆ = 1 and h = 0 where it is more convenient
to apply non-abelian bosonization. This case will be discussed in Sect. 9.3.

We first summarize the outcome of the bosonization of the XXZ chain
and then present its derivation in detail. For a complete bibliography see
[4, 14–17] and references therein.

The Hamiltonian (6.56) is exactly solvable by Bethe ansatz and it can be
shown that its low-energy properties are described by a scalar boson with a
Hamiltonian given by

Hcont
XXZ =

v

2

∫
dx
(
K
(
∂xφ̃(x)

)2
+

1
K

(∂xφ(x))2
)

(6.57)

where φ̃ is the field dual to the scalar field φ and it is defined in terms of
its canonical momentum as ∂xφ̃ = Π. This notation is usually introduced
in order to simplify the expressions of the spin operators in the continuum
limit; see the Appendix for details on our conventions.

The Fermi velocity v and the so-called Luttinger parameter K depend on
both the magnetic field and the anisotropy parameter ∆. These two parame-
ters determine completely the low energy dynamics of the lattice model and
they can be computed from the Bethe Ansatz solution. For zero magnetic
field and −1 < ∆ < 1 they can be found in closed form:

K(∆) =
π

2(π − θ)
v(∆) =

π

2
sin θ
θ

(6.58)

where cos(θ) = ∆ and we have set J = 1. Otherwise, one has to solve
numerically a set of integro-differential equations (see [18]) which result is
discussed below.

The Hamiltonian (6.57) corresponds to a conformal field theory with cen-
tral charge c = 1 and the free boson is compactified at radius R, i.e. it
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satisfies φ = φ + 2πR, where R is related to the Luttinger parameter K as
R2 = 1/(2πK). The importance of this restriction is discussed in the Appen-
dix.

Let us consider first the XY case, i.e. ∆ = 0, and for convenience let
us rotate by π the spins on every second site around the z axis in spin
space, which simply amounts to an irrelevant change of the overall sign of
the exchange term (in this case J and −J lead to equivalent models).

Then it is convenient to write the spin operators in terms of spinless
fermions ψn, through the so-called Jordan-Wigner transformation:

Sz
n = ψ†

nψn − 1/2 (6.59)

S+
n = e−iαnψ†

n , αn = π

n−1∑

j=0

(
ψ†

jψj

)
. (6.60)

It is easy to show that these operators satisfy the SU(2) algebra (6.1) provi-
ded S = 1/2 and the spinless fermions ψn are canonical, i.e. {ψn, ψ

†
n′} = δn,n′ .

The Hamiltonian (6.56) can then be written as

H latt
XY = J

N∑

n=1

(
−1

2

(
ψ†

nψn+1 − ψnψ
†
n+1

)
− h

(
ψ†

nψn − 1/2
))

. (6.61)

This problem can be readily solved by Fourier transforming

ψ̃k =
1√
N

∑

n

ψne
−ikna (6.62)

where a is the lattice spacing and the momentum k is restricted to the first
Brillouin zone, k ε (−π/a, π/a].

H latt
XY = −J

∑

k

cos(k)ψ̃†
kψ̃k − h

∑

k

ψ̃†
kψ̃k. (6.63)

where we see that we have one band of fermions with dispersion e(k) =
−J cos(k) and chemical potential −h. The ground state is obtained by filling
all single particle states which have energies e(k) < h as in Fig. 6.1

Normalizing the magnetization as M = 2
N

∑
n S

z
n = M(h), we see that

the Fermi momentum is given by

kF = ±π
2

(1 +M). (6.64)

Since we are interested in the low energy properties of the model, we keep
only the modes close to the Fermi surface (here consisting of two points) by
restricting the sum in (6.63) to |k ± kF | ≤ Λ, with Λ an ultraviolet cutoff.
This allows us to study the system at length scales larger than 1/Λ.
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k
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−

e(k)
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J

Fig. 6.1. Dispersion

Writing the fermions as (x = na)

ψ(x)√
a
≈ eikF xψL(x) + e−ikF xψR(x) (6.65)

where ψR and ψL vary slowly with x in a scale of order a > 1/Λ, and contain
the Fourier modes around ±kF respectively, we obtain

Hcont
XY = iv

∫
dx[ψ†

R∂xψR − ψ†
L∂xψL] (6.66)

where the Fermi velocity v = ∂e(k)/∂k|k=kF
= Ja sin(kF ) which we set to 1

in what follows. This is the Dirac Hamiltonian in (1 + 1) dimensions. This
means that the low energy theory for the XX case (i.e. ∆ = 0) corresponds
to free fermions.

One can easily compute the fermion two point functions for right and left
movers that are given by

〈ψR(x, t)ψ†
R(0, 0)〉 =

1
2πa

1
z

(6.67)

〈ψL(x, t)ψ†
L(0, 0)〉 =

1
2πa

1
z̄

(6.68)

where z = t+ ix, z̄ = t− ix.
From these correlators one can compute the one particle momentum dis-

tribution functions which show the characteristic Fermi liquid behaviour. We
will see below that this behaviour is changed radically as soon as interactions
are taken into account.

In order to treat the interactions that arise for ∆ �= 0 it is more convenient
to map the fermionic theory into an equivalent bosonic one, a procedure
usually called bosonization.
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It can be shown [19] that the fermionic theory described by (6.66) can be
equivalently reformulated in terms of bosonic variables with Hamiltonian

H =
1
2

∫
dx[(∂xφ)2 + (∂xφ̃)2], (6.69)

where φ is a scalar field and φ̃ is defined in terms of the conjugate momentum
Π(x) = ∂xφ̃(x). Canonical commutation relations between φ and Π imply

[φ(x), φ̃(x′)] = − i

2
sign(x− x′) (6.70)

while all other commutators are zero.
The key observation is that the fermion operators can be written in terms

of the scalar field as

ψR(x) = ηR
1√
2πa

: ei
√

4πφR(x) : , ψL(x) = ηL
1√
2πa

: e−i
√

4πφL(x) :(6.71)

where ηR,L are the so-called Klein factors which satisfy anticommutation
relations {ηi, ηj} = 2δij . These Klein factors are operators which act on an
auxiliary Hilbert space that can be chosen arbitrarily and this freedom is
exploited to eliminate them from the effective theory (see below). The right
and left components φR,L are defined in terms of the bosonic field and its
dual as

φ = φR + φL φ̃ = φR − φL . (6.72)

The fields in the right hand side of (6.71) obey anticommutation rules, as
can be easily verified using (6.70), and their two-point functions reproduce
the free fermion results (6.68) (see the Appendix for details).

One can further show that the fermionic currents can be bosonized as

JR = : ψ†
RψR : (x) = − i√

π
∂zφR(x),

JL = : ψ†
LψL : (x) =

i√
π
∂z̄φL(x) (6.73)

where Klein factors do not appear here since η†
i ηi = 1 for i = R,L. In

the following we will not include the Klein factors explicitly to simplify the
notation. This is only possible whenever one can simultaneously diagonalize
all the Klein operators which appear in a given problem, which is trivially the
case for a single chain: In this case we have only two different Klein operators
ηR and ηL and henceforth the only non-trivial products that could appear in
the interaction terms are tRL ≡ ηRηL and tLR = −tRL. We can then choose
a basis of the Hilbert space where Klein operators act which diagonalizes tRL

and tLR simultaneously and then forget about them. We discuss this issue in
more detail in the case of N -leg ladders in Sect. 9.9 where the situation is a
bit more complicated.
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The interaction terms which arise when ∆ �= 0 i.e.,

δH = ∆

N∑

n=1

(
Sz

nS
z
n+1
)

= ∆

N∑

n=1

((
ψ†

nψn − 1/2
) (

ψ†
n+1ψn+1 − 1/2

))
,

(6.74)

can be rewritten using (6.59) and (6.65) as

δH = ∆

∫
dx [ρ(x) + (−1)xM(x)] .

[
ρ(x+ a) + (−1)x+aM(x+ a)

]
, (6.75)

where

ρ(x) =: ψ†
RψR + ψ†

LψL : and M(x) = ψ†
LψR + ψ†

RψL. (6.76)

Expanding up to first order in a and eliminating oscillatory terms one
obtains

δH = ∆

∫
dx
(
4JRJL + J2

R + J2
L −

(
(ψ†

LψR)2 +H.c.
))

. (6.77)

The first three terms which are quadratic in the currents are marginal in the
renormalization group sense and can be easily handled using bosonization.
The last one is irrelevant for ∆ < 1 so we postpone its analysis to a later
stage. Quadratic interactions between currents arise in the so-called Thirring
model and hence are usually termed “Thirring-like” terms.

The current-current terms are bosonized using (6.71) and (6.73) as

δH =
1
π
∆

∫
dx
(
4∂xφL∂xφR − (∂xφR)2 − (∂xφL)2

)
. (6.78)

This term can be absorbed in (6.69) and the full bosonized XXZ Hamil-
tonian then reads

H =
v

2

∫
dx

[
1
K

(∂xφ)2 +K(∂xφ̃)2
]
, (6.79)

where, up to first order in ∆, we have

K = 1− 2∆
π

, (6.80)

which provide the first term in the expansion of (6.58) for small ∆. The
situation with the effective velocity v is less straightforward, as discussed in
[20]. In this case one has to take into account the renormalization of the Fermi
velocity due to the ∆ interaction on the lattice before taking the continuum
limit. In this way one gets to first order in ∆

v = 1 +
2∆
π

. (6.81)
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One can improve these results by using the exact Bethe Ansatz solution
from which one can extract the exact values of v andK, as given in (6.58). The
idea is to compare the asymptotics of the XXZ chain correlation functions
obtained via the Bethe Ansatz solution in a finite volume L with that of the
free boson defined by (6.79). It should be stressed that the relation between
kF and M (6.64) is not modified by the interactions. One further shows in
this way that the bosonic field has to be compactified with a radius R given
in terms of the Luttinger parameter K as R2 = 1/(2πK). This means that φ
and φ+2πR are identified at each point, and this leads to strong restrictions
to the possible perturbations which could appear (see the Appendix).

We can now study the effects of the interactions on the low energy beha-
viour.

To this end, let us first compute the two point functions of the fermions
for ∆ �= 0. Using (6.71) and (6.79) one can easily show that (6.67) modifies
to

〈ψR(x, t)ψ†
R(0, 0)〉 =

1
2πa

1
z2dz̄2d̄

(6.82)

where d = (K+1/K+2)/8,d̄ = (K+1/K−2)/8 and K(∆) is given in (6.58).
A similar expression is obtained for the left-handed fermions. One can already
observe the drastic change in the exponents caused by the interactions.

The most dramatic effect of the interactions is the disappearance of the
quasiparticle peak in the Fourier transformed Green function, with the con-
sequent disappearance of the finite jump in the momentum distribution fun-
ction.

More precisely, the spectral function at zero temperature which is defined
as

ρ(q, ω) ≡ − 1
π

ImGR(kF + q, ω) , (6.83)

where GR(k, ω) is the Fourier transformed retarded two point function

GR(x, t) ≡ −iΘ(t)
〈{

ψR(x, t), ψ†
R(0, 0)

}〉
, (6.84)

can be computed to give

ρ(q, ω) = −2 sin(2πD)Γ (1− 2d)Γ (1− 2d̄)|w − q|2d−1|w + q|2d̄−1 . (6.85)

where D = d+ d̄ is the scaling dimension of the interacting fermion.
From this last expression one can obtain the single particle density of sta-

tes by integrating over the momentum, which leads to a power law behaviour

N(ω) ≈ |w|2D−1 (6.86)

instead of the delta function peak characteristic of a Fermi liquid.
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One can also compute the momentum distribution which gives

n(k) ≈ n(kF ) + const. sign(k − kF )|k − kF |+ · · · (6.87)

instead of the Fermi liquid behaviour in which n(k) presents a finite jump
at kF , showing again the radical difference between the low energy theory of
the XXZ chain and a Fermi liquid.

Another crucial difference between a Fermi liquid and our present theory
is that in the former the exponents that control the space decay of correlations
are universal (in the sense that they do not depend on the interactions) while
they do depend on the interactions in the latter case.

All these features have motivated the name of Luttinger liquid to describe
this kind of systems [10].

As a final step, the bosonized expressions for the spin operators are ob-
tained using (6.59), (6.60), (6.65) and (6.71) leading to

Sz
x ≈

1√
2π

∂φ

∂x
+ a : cos(2kFx+

√
2πφ) : +

〈M〉
2

, (6.88)

and

S±
x ≈ (−1)x : e±i

√
2πφ̃(b cos(2kFx+

√
2πφ) + c) : (6.89)

where we have rescaled K → 2K in what follows, so that the free fermion
point now corresponds to K = 2. The colons denote normal ordering with
respect to the groundstate with magnetization 〈M〉, which leads to the con-
stant term in (6.88). The prefactor 1/2 arises from our normalization of the
magnetization to saturation values 〈M〉 = ±1. The constants a, b and c are
non-universal and can be computed numerically and in particular an exact
expression for b has been proposed in [21] for h = 0.

As we mentioned above, the parameter K in (6.57) can be computed by
solving a set of integral equations obtained in the Bethe ansatz solution [22].
The results obtained from them are summarized in the magnetic phase dia-
gram for the XXZ-chain (Fig. 6.2). There are two gapped phases: A ferro-
magnetic one at sufficiently strong fields and an antiferromagnetic phase for
∆ > 1 at small fields. In between is the massless phase where the bosonized
form (6.57) is valid [18].

The transition between the ferromagnetic commensurate phase and the
massless incommensurate phase, which occurs on the line huc = (1 + ∆)J ,
is an example of the Dzhaparidze-Nersesyan-Pokrovsky-Talapov, universality
class [23,24], i.e. for 〈M〉 → 1 the magnetization behaves as

(〈M〉 −Mc)
2 ∼ h2 − h2

uc (6.90)

with here Mc = 1.
This transition, which is an example of a commensurate-incommensurate

(C-IC) transition can be described in the bosonization language by noticing
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Fig. 6.2. Magnetic phase diagram of the XXZ-chain (6.56).

that for magnetic fields above saturation, (h > huc), one has to consider an
additional operator which becomes commensurate for 〈M〉 = 1. The Hamil-
tonian is then given by

H = H0 +
∫

dx cos
√

2πφ(x) + heff

∫
dx∂xφ (6.91)

where the last term corresponds to the interaction with the magnetic field
in the bosonized language (heff ∝ h) has no effect for h > huc due to the
presence of the gap [25]. The cos term which arises at 〈M〉 = 1 is relevant
and then responsible for the gap. By decreasing h→ huc one can then drive
the system into a massless regime and precisely at the transition point the
Luttinger parameter takes the universal value K = 2 [23,24].

The other transition line starts at ∆ = 1 and h/J = 0, i.e. at the SU(2)
point (see Sect. 9.3 for the study of this case using non-abelian bosonization).
The Luttinger parameter takes the value K = 1 at this point and hence one
has to include in the analysis of the low-energy dynamics the operator of
dimension 2K

O(x) = cos(
√

8πφ(x)) , (6.92)

which is marginal at this point and becomes relevant for smaller K (bigger
∆). One can easily show how this operator arises by plugging the bosonized
expression of Sz (6.88) in the ∆ interaction term (6.74). This operator opens
a gap in the spectrum via a Kosterlitz-Thouless transition [26] and from
the Bethe Ansatz equations one readily obtains the characteristic stretched
exponential decay for the gap for ∆ slightly bigger than one:

hc

J
∼ 4πe

− π2

2
√

2(∆−1) (for ∆ slightly bigger than 1). (6.93)
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6.9.2 Thermodynamics and Correlations

We are now ready to analyze the thermodynamic properties of the XXZ
chain in the low energy limit. Spin-spin correlation functions can be computed
using (6.88, 6.89) together with the Hamiltonian (6.57) as well as (6.186,
6.189, 6.195) in the Appendix, with g = 1/K. One obtains in this way the
following expressions for the equal time correlators (we set m = 1 hereafter):

〈Sz
x1
Sz

x2
〉 ≈ 〈M〉2

4
+

K

4π2

1
|x1 − x2|2

+
a2

2
cos(2kF (x1 − x2))

|x1 − x2|K
(6.94)

〈S+
x1
S−

x2
〉 ≈ −b

2

2
cos((2kF − π)(x1 − x2))

|x1 − x2|K+ 1
K

+ (−1)(x1−x2) c2

|x1 − x2|
1
K

(6.95)

where both staggered and non-staggered contributions are obtained.
From (6.94) we observe that for ∆ > 0, i.e. in the AF region, K < 2 and

hence the staggered contribution dominates, signaling the expected tendency
towards antiferromagnetic ordering. For ∆ > 2 instead, since K > 2, it is
the non-staggered term that dominates at long distances, as expected in the
ferromagnetic side. However, as expected in one dimension, there is no true
long range order since the correlators decay slowly with a power law, which
is called quasi-long range order. More importantly, it should be stressed that
the power law decay is given by the Luttinger parameter K which is non-
universal and depends on the microscopic details, such as the anisotropy ∆
the magnetic field, etc.

Using the above expressions one can compute different thermodynamic
properties such as the magnetic static susceptibility [27] and transport pro-
perties such as the dynamical susceptibility and thermal conductivity. These
computations can be extended to finite (small) temperature by performing
a conformal transformation which maps the plane (z) into the cylinder (ζ).
This transformation compactifies the imaginary time direction via

z(ζ) = exp(2πζ/β) , (6.96)

where β = 1/T .
Following [27], let us compute the magnetic susceptibility, which is defined

as

χ ≡ ∂M

∂h
= β

Tr[(
∑

n S
z
n)2 e−βH ]

Tr [e−βH ]
− β

Tr
[
(
∑

n S
z
n) e−βH

]2

[Tr [e−βH ]]2
. (6.97)

and hence

χ = β

(
L
∑

n

〈Sz
nS

z
0 〉 −M2

)
(6.98)
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Using the bosonized expression for the spin operators and noticing that after
the integration the oscillating terms are eliminated, we are led to compute

βL
∑

n

〈Sz
nS

z
0 〉 → β

∫ ∞

−∞
dx 〈Sz

xS
z
0 〉 =

β

2π

∫ ∞

−∞
dx 〈∂xφ(x)∂xφ(0)〉 , (6.99)

Using (6.187), (6.188) one can easily compute the needed zero temperature
correlations (recovering the Fermi velocity)

〈∂xφR,L(x, τ)∂xφR,L(0, 0)〉 = − K

4π(vτ ± ix)2
. (6.100)

We can extend this result to finite (but small) temperatures by means of
the conformal transformation (6.96), which leads to the replacement

vτ ± ix→ (vβ/π) sin(π
vτ ± ix

vβ
) (6.101)

in (6.100).
We are thus led to evaluate

β

∫ ∞

−∞
dx 〈Sz

xS
z
0 〉 = − K

8v2β

∫ ∞

−∞
dx

(
1

sin2(π vτ+ix
vβ )

+
1

sin2(π vτ−ix
vβ )

)
,

(6.102)

which can be easily done by using the following change of variables u =
tan(πτ/β);w = −i tan(iπx/(vβ)).

We finally obtain

χ =
K

πv
. (6.103)

This result is valid for small temperatures and independent of T as it is
expected from the scale invariance of the system.

By including the effects of the operator (6.92) which is irrelevant for ∆ < 1
and becomes marginal at the SU(2) point as we already discussed, one can
compute the next to leading term in the low temperature behavior of the
susceptibility. One can do this by computing the two point correlator of the
current in (6.99) using perturbation theory to include the perturbation term.
For 1/2 < ∆ < 1 one obtains a correction term proportional to T 4(K−1)

and for ∆ < 1/2 it takes the universal form T 2. In the SU(2) case, ∆ = 1,
the perturbation is marginally irrelevant and the correction term to the low
temperature susceptibility is then logarithmic, ∝ ln−1(T0/T ) with T0 a given
constant. This result has been shown to agree quite well with the exact Bethe
Ansatz result [27].

Notice that the susceptibility diverges when we approach the ferromagne-
tic point ∆ → −1 because both v and K−1 vanish in this limit (see (6.58)).
In the massive regime, which occurs for ∆ > 1, one obtains the expected
exponential decay for T → 0.
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6.9.3 SU(2) Point via Non-abelian Bosonization

For ∆ = 1 and h = 0, which corresponds to K = 1 (or R = 1/
√

2π) and
〈M〉 = 0 (and hence kF = π/2) one recovers the full SU(2) spin symmetry.
This can be observed e.g. in (6.94, 6.95), since they coincide at this particular
point:

〈Sz
x1
Sz

x2
〉 ≈ − 1

4π2

1
|x1 − x2|2

+ (−1)(x1−x2) a2

|x1 − x2|
(6.104)

〈S+
x1
S−

x2
〉 ≈ b2

|x1 − x2|
+ (−1)(x1−x2) c2

|x1 − x2|
(6.105)

For certain purposes it is more convenient to use non-abelian bosoniza-
tion [28] and rewrite both the low energy Hamiltonian and the continuum
expressions for the spin operators in this new language.

It can be shown that the scalar boson compactified at radius R = 1/
√

2π
is equivalent to the theory describing a SU(2) group valued (matrix) field g
with dynamics given by the Wess-Zumino-Witten (WZW) action [28]

S[g]WZW =
k

8π

∫
d2xtr

(
∂µg∂

µg−1)

+
k

12π

∫
d3yεijktr

(
g−1∂igg

−1∂jgg
−1∂kg

)
. (6.106)

where the trace is taken over the group indices and the so called level k equals
1 in the present case. This theory has been studied in [28] in the context of
the non-Abelian bosonization of fermions and in [29] using conformal field
theory techniques, where e.g. four point correlators were computed. See [30]
for details.

The corresponding Hamiltonian can be written in the Sugawara form
which is quadratic in the SU(2) currents

HWZW =
1

k + 2

∫
dx (JR · JR + JL · JL) (6.107)

where JR,L = tr(σg−1∂z,z̄g) and the spin operators can be compactly written
as

Sx ≈ (JR + JL) + const(−1)xtr(σg) (6.108)

The two formulation are related as follows

g ∝
(

: exp(i
√

2πφ) : : exp(−i
√

2πφ̃) :
− : exp(i

√
2πφ̃) : : exp(−i

√
2πφ) :

)
(6.109)

and
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Jz
R,L = ±∂z,z̄φ

J+
L = : exp(−i

√
8πφL :) , J+

R =: exp(−i
√

8πφR) : . (6.110)

The marginally irrelevant perturbation (6.92) can be written in this language
as the product of left and right handed currents JR · JL.

At this point this (more complicated) formulation may appear unneces-
sary except for the fact that the expressions exhibit the SU(2) invariance
more naturally. However, the description of the S = 1/2 Heisenberg chain
in terms of the level 1 WZW theory is crucial in the study of interacting
systems, such as e.g the two leg Heisenberg ladder in the weak interchain
coupling regime [31,32]. In this case one can exploit the powerful machinery
of CFT in two dimensions to study the low energy dynamics of these systems.
This particular example is discussed in Sect. 9.7.

6.9.4 Modifications of the XXZ Chain

Using the formalism just developed one can study any modification of the
XXZ chain provided that perturbation theory can be safely applied. We
discuss now the case in which the exchange couplings J in the Hamiltonian
(6.56) have a spatial periodicity of two sites (usually called dimerization)
as a sample case, but other perturbations like next-nearest-neighbors, terms
breaking XY symmetry, etc. can be treated similarly.

The Hamiltonian is given by

H latt
XXZ =

∑

n

Jn

(
1
2
(
S+

n S
−
n+1 + S−

n S
+
n+1

)
+∆Sz

nS
z
n+1

)
, (6.111)

where Jn = J(1 + (−1)nδ). For ∆ = 0 we can map it into a model of free
fermions using the Jordan-Wigner tranformation (6.60)

H =
J

2

∑

n

(
(1− δ)(ψ†

2nψ2n+1 +H.c.) + (1 + δ)(ψ†
2n+1ψ2n+2 +H.c.)

)

(6.112)

Defining on even and odd sites the fermions χn = ψ2n and ξn = ψ2n+1
and Fourier transforming, one obtains a two by two Hamiltonian which can
be diagonalized to give

H = J
∑

k

(
E+ ψ

(+)†
−k ψ

(+)
k + E− ψ

(−)†
−k ψ

(−)
k

)
(6.113)

where ψ(+)
k and ψ

(−)
k are defined in terms of the Fourier component of χ and

ξ as

ψ
(+)
k =

(1− δ) + (1 + δ)e−ik

√
2E+

χk +
1√
2
ξk ,

ψ
(−)
k =

(1− δ) + (1 + δ)e−ik

√
2E−

χk +
1√
2
ξk . (6.114)
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We have then two bands of fermions with dispersions given by

E± = ±
√

(1 + δ2 + (1− δ2) cos k)/2 (6.115)

which shows that a half filling there is a gap δ in the spectrum (see Fig. 6.3).
Notice that the momentum k here is twice the momentum we have used in
(6.62), due to the distinction between even and odd sites we made in going
to the new variables χ and ξ.

E(k)

0

π−π k

2δ

Fig. 6.3. Energy bands for the dimerized case.

The same model can be studied using bosonization now for arbitrary ∆
but perturbatively in the dimerization δ. In this scheme one treats the term
Jδ
∑

n(−1)n
( 1

2

(
S+

n S
−
n+1 + S−

n S
+
n+1

)
+∆Sz

nS
z
n+1
)

as a perturbation which
can be written using (6.88), (6.89). It is easy to show that a new term arises,
which is of the form

O(x) = cos
√

2πφ (6.116)

which is relevant and is responsible for the opening of a gap. This operator
could have been predicted by symmetry arguments, since once the translation
symmetry is broken in the lattice, as it happens in the dimerized case, it is
no longer forbidden to appear. This can be seen as follows: translation by one
lattice site x→ x+ 1 implies that the chiral fermions in (6.65) transform as

ψR → eikF ψR, ψL → e−ikF ψL (6.117)

and henceforth, for kF = π/2, the bosonic field is transformed as φ →
φ −

√
π/2. Breaking of this symmetry then allows for a term like (6.116)

to appear, which was otherwise forbidden. In the non Abelian SU(2) formu-
lation, the parity breaking operator is simply given by trg.
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The gap can be estimated by power counting to be of order ≈ δ(1/(2−K/2)).
Note that in the XY case (i.e. for ∆ = 0) K = 2 and we recover the free
fermion result. In the next section we compute the RG equations for this
effective theory.

6.9.5 RG Analysis of the Scalar Field Perturbed
by Vertex Operators

We already used the renormalization group technique when treating the non-
linear sigma model. The case of the scalar bosonic field with a vertex operator
is much simpler. Following [8], the action is given by:

S =
1
2

∫
dx dt

[
1
K

(∂xφ)2 + λ cos(βφ)
]
, (6.118)

where β =
√

2π corresponds to the dimerized case.
The scaling dimension of the operator cos(βφ) is Kβ2

4π and the coupling λ

has then the dimension 2− Kβ2

4π in order to have a dimensionless action.
Imagine now that, as before, we integrate over the fast degrees of freedom

within the momenta shell Λ−δΛ and Λ, or shifting from the scale L to L+δL.
Since λ is a dimensional constant, it has to be rescaled accordingly. Simple
dimensional analysis tells us that:

dλ

dln(L)
=
(

2− Kβ2

4π

)
λ (6.119)

Of course one may anticipate that fluctuations can change this näıve sca-
ling relation but to lowest order in the coupling constant we can keep this
equation for describing the behavior of the system under renormalization
group transformations. This is not, however, the end of the story. Let us
assume that

(
2− Kβ2

4π

)
is small i.e. we are close to the point where λ is mar-

ginal. In the process of integration, we define an effective partition function
which we can define through the formal notation:

Z = Zeff(1− λ

∫
dx dt〈cos(βφ(x, t))〉+

λ2

2

∫
dx1 dx2 dt1 dt2〈cos(βφ(x1, t1)) cos(βφ(x2, t2))〉+ ...) (6.120)

where the integration is taken over scales smaller than δL. The term in pa-
renthesis can then be re-exponentiated and we can define our effective action
in terms of the original one:

Seff = S − λ

∫
dx dt〈cos(βφ(x, t))〉+

λ2

2

∫
dx1 dx2 dt1 dt2〈cos(βφ(x1, t1)) cos(βφ(x2, t2))〉+ ... (6.121)
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We then see that in the process of integrating out the degrees of freedom at
small scales, we can have the merging of two vertex operators separated by
a distance smaller than δL. In this operator product, there is certainly the
term cos(2βφ) which is present and contributes to the renormalization group
equations, but can also be neglected to first order. There is however another
term in the product expansion of the vertex operators:

eiβφ(x)e−iβφ(x+δx) → − β2 (∂uφ)2

|δx|Kβ2
2π −2

+ ... (6.122)

So the constant K gets a correction:

1
Keff

=
1
K

+ λ2β2

L+δL∫

L

d2δx

|δx|2−ε

=
1
K

+
λ2β2

ε
2π((L+ δL)ε − Lε) (6.123)

where ε = 4−Kβ2

2π is supposed to be small. From this result, and from (6.119)
we can write the renormalization group equations to lowest order:

dλ

dln(L)
=
(

2− Kβ2

4π

)
λ+ ...

dK

dln(L)
= −K

2β2

4π
λ2 + ... (6.124)

which are known as the Kosterlitz renormalization group equations. The flow
diagram for these equations is well known [8]. The flow is depicted in Fig. 6.4.
In the vicinity of λ = 0, the line λ = λc(K) =

(
Kβ2

8π − 1
)

separates the
regions of initial conditions that flow to weak coupling and strong coupling
respectively. If K > 8π

β2 and λ < λc(K), the large scale behavior of the
system corresponds to a massless scalar field theory, while elsewhere the
system presents a massive behavior with a finite correlation length.

6.9.6 Charge Degrees of Freedom: Hubbard and t − J Models

The methods described in the previous sections can be extended to study sy-
stems including spin and charge degrees of freedom, provided they are Bethe
ansatz solvable. Such is the case of the Hubbard model which is exactly sol-
vable for arbitrary values of the on-site repulsion U , filling and magnetic
field [33]. The exact solution can then be used to construct a low energy
bosonized effective field theory [34–36] which can then be used to study per-
turbations of this model (see e.g. [14, 37]).

Here we present some aspects of the bosonization description of the Hub-
bard chain and its applications (see [15,16,37] and references therein).



286 D.C. Cabra and P. Pujol

λ

8π
β2

K

Fig. 6.4. Renormalization Group flow

The Hubbard model describes electrons hopping on a lattice which inter-
act repulsively via an on-site Coulomb energy U with the lattice Hamiltonian
given by

H = −t
∑

n,α

(c†n+1,αcn,α +H.c.) + U
∑

n

c†n,↑cn,↑c
†
n,↓cn,↓

+µ
∑

n

(c†n,↑cn,↑ + c†n,↓cn,↓)−
h

2

∑

n

(c†n,↑cn,↑ − c†n,↓cn,↓) . (6.125)

Here c†n,α and cn,α are electron creation and annihilation operators at site
n, α =↑, ↓ the two spin orientations, h the external magnetic field and µ the
chemical potential. As we already mentioned, this model has been exactly
solved by Bethe Ansatz already in 1968 [33] but it took until 1990 for the
correlation functions to be computed by combining Bethe Ansatz results with
Conformal Field Theory (CFT) techniques [34].

Spin-charge separation is one of the important features of the Hubbard
chain at zero magnetic field. Interestingly, it is no longer spin and charge
degrees of freedom that are separated if an external magnetic field is switched
on [34]. Nevertheless it has been shown that in the presence of a magnetic
field, the spectrum of low energy excitations can be described by a semi-direct
product of two CFT’s with central charges c = 1 [34]. This in turn implies
that the model is still in the universality class of the Tomonaga-Luttinger
(TL) liquid and therefore allows for a bosonization treatment.

We proceed as before by setting U = 0 and writing the fermion operators
as (now we have fermions with spin, and hence the number of equations is
duplicated)
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cn,α → ψα(x) ∼ eikF,αx ψL,α(x) + e−ikF,αx ψR,α(x) + . . . (6.126)

= eikF,αx e−i
√

4πφL,α(x) + e−ikF,αx ei
√

4πφR,α(x) + . . . , (6.127)

where kF,α are the Fermi momenta for up and down spin electrons, which
are related to the filling and the magnetization as

k+ = kF,↑ + kF,↓ = πn ; k− = kF,↑ − kF,↓ = π〈M〉 , (6.128)

The fields φR,L,α are the chiral components of two bosonic fields, which bo-
sonize the spin up and down chiral fermion operators ψR,L,α, as in (6.71).
The dots stand for higher order terms which have to be computed in or-
der to reproduce the correct asymptotics of correlations obtained from the
Bethe Ansatz solution. They take into account the corrections arising from
the curvature of the dispersion relation due to the Coulomb interaction. The
effects of band curvature due to interactions are also present in the case of
the XXZ chain. However, in that case the effects are, for most practical
purposes, negligible, since they lead in general to additional terms in the bo-
sonization formulae which are strongly irrelevant operators. In the present
case, though, these terms can be important since in some cases they could
be relevant and should then be taken into account. For non-zero Hubbard
repulsion U and magnetic field h, the low energy effective Hamiltonian cor-
responding to (6.125) written in terms of the bosonic fields φ↑ and φ↓ has a
complicated form, mixing up and down degrees of freedom [36].

The crucial step to obtain a simpler bosonized Hamiltonian is to consider
the Hamiltonian of a generalized (two component) TL model and identify
the excitations of the latter with the exact Bethe Ansatz ones for the model
(6.125), providing in this way a non-perturbative bosonic representation of
the low energy sector of the full Hamiltonian (6.125). This program has been
carried out in [36] and reviewed in [37].

The fixed point (i.e. neglecting all irrelevant terms) bosonized Hamilto-
nian can be written as

∑

i=c,s

ui

2

∫
dx
[
(∂xφi)

2 + (∂xθi)
2
]
, (6.129)

where φ = φR + φL and θ = φR − φL and the new bosonic fields φc and φs

are related to φ↑ and φ↓ through
(
φc

φs

)
=

1
detZ

(
Zss Zss − Zcs

Zsc Zsc − Zcc

)(
φ↑
φ↓

)
, (6.130)

In these expressions Zij , i, j = c, s, are the entries of the dressed charge
matrix Z taken at the Fermi points

Z =
(
Zcc Zcs

Zsc Zss

)
. (6.131)
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These matrix elements are solutions of a set of coupled integral equations
obtained from the Bethe Ansatz [34] and depend on the Hubbard coupling
U , the chemical potential µ and the magnetic field h. These parameters play
a similar role as that played by K in the case of the XXZ chain.

At zero magnetic field, the matrix Z reduces to

Z(h = 0) =
(

ξ 0
ξ/2 1/

√
2

)
, (6.132)

with ξ = ξ(µ,U). In this case we recover the expressions for the charge and
spin fields for zero magnetic field

φc =
1
ξ

(φ↑ + φ↓) , φs =
1√
2

(φ↑ − φ↓) , (6.133)

where the compactification radius of the spin field (i.e. the parameter which
indicates the period of φs, φs = φs+2πRs, Rs = 1/

√
2π) is fixed by the SU(2)

symmetry of the spin sector (it corresponds to the Luttinger parameter for
the spin sector being Ks = 1). The radius for the charge field, on the other
hand, depends on the chemical potential µ and the Coulomb coupling U .

One very important fact that we already mentioned is that for h = 0 the
charge and spin degrees of freedom are completely decoupled, a phenomenon
which is known as spin-charge separation. In particular, since the velocities
for the two kinds of excitations are different, it is easy to verify that if one
creates a particle (true electron) on the ground state, its constituents (spin
and charge parts) will, after some time, be located in different points in space.

It should be noted that for M �= 0, the fields arising in the diagonalized
form of the bosonic Hamiltonian (6.129) are no longer the charge and spin
fields.

For generic values of the parameters of the model (6.125), we can now
write down for example the bosonized expressions for the charge density
operator and for the z component of the spin operator

ρ(x) = ψ†
↑ψ↑(x) + ψ†

↓ψ↓(x)

=
1√
π
∂x (Zccφc − Zcsφs) + a sin[k+x−

√
π (Zccφc − Zcsφs)]

× cos[k−x−
√
π ((Zcc − 2Zsc)φc − (Zcs − 2Zss)φs)]

+ b sin(2k+x−
√

4π(Zccφc − Zcsφs)) , (6.134)

2Sz = ψ†
↑ψ↑ − ψ†

↓ψ↓ = c ∂x((Zcc − 2Zsc)φc − (Zcs − 2Zss)φs)

+d cos[k+x−
√
π(Zccφc − Zcsφs)]

× sin[k−x−
√
π((Zcc − 2Zsc)φc − (Zcs − 2Zss)φs)]

−e sin[2k−x−
√

4π((Zcc − 2Zsc)φc − (Zcs − 2Zss)φs)] (6.135)
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where a, b, c, d, e are non-universal constants. Other operators can be con-
structed similarly and then correlations can be easily computed following
similar lines as for the XXZ chain.

In the limit of large U , double occupancy will be forbidden and one can
use perturbation theory in t/U to show that this Hamiltonian reduces to the
so called t− J model in this limit which for zero magnetic field reads

Ht−J = −t
∑

n,α

(c†n+1,αcn,α +H.c.) + J
∑

n

Sn · Sn+1 (6.136)

where the operator Sn represents the spin of the electron at site n,

Sn = c†n,α

σαβ

2
cn,β (6.137)

with σ the Pauli matrices and the spin exchange constant is given by J =
t2/U .

In the case of zero field, kF,↑ = kF,↓ = kF , and the expressions for the
charge density and the Sz spin operators are simplified to

ρ(x) =
ξ√
π
∂xφc + a sin(2kFx−

√
π ξφc)× cos(

√
2πφs)

+ b sin(4kFx−
√

4π ξφc) , (6.138)

Sz = c ∂xφs + d cos(2kFx−
√
π ξφc)× cos(

√
2πφs) + e sin(

√
8πφs)

(6.139)

If one works at half-filling, which in this language means one electron per
lattice site and hence kF = π/2, there is an extra operator perturbing the
charge sector which opens a charge gap even for arbitrarily small U . Then
one can integrate out the charge degrees of freedom to recover the S = 1/2
Heisenberg chain studied before, which describes the Mott insulating phase
of the Hubbard model.

After freezing the massive charge degrees of freedom, the spin operator
reads

Sz = c ∂x(φs) + const × (−1)x cos(
√

2πφs) , (6.140)

where const ∝ 〈cos(
√
π ξφc)〉 and we recover the expression in (6.88) for

kF = π/2.
The t− J model is not Bethe Ansatz solvable in general, but only at the

specific point J = 2t where it becomes supersymmetric [38]. At this point one
can follow a similar procedure as described above to construct the bosonized
low energy theory from the Bethe Ansatz solution.
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6.9.7 Two-Leg Heisenberg Ladder

We have seen by using the NLSM approach that one should expect a spin gap
in the spectrum of the two-leg Heisenberg ladder. In the present section we
study the same problem using a different technique which further supports
this conclusion.

We apply the combination of non-abelian bosonization techniques and
the powerful machinery of conformal field theories in two dimensions to the
case of a two leg S = 1/2 Heisenberg antiferromagnetic spin ladder following
[31,32]. This is one of the simplest examples where the combination of these
techniques shows its power by allowing for a complete analysis of the low
energy dynamics.

The Hamiltonian is defined as

H latt
2−leg = J

(
S1

n · S1
n+1 + S2

n · S2
n+1
)

+ J ′S1
n · S2

n, (6.141)

where J, J ′ are the intrachain and interchain couplings respectively. We work
in the weak interchain coupling limit J ′ 
 J , which allows us to apply the
bosonization procedure described in Sect. 9.3 to each of the chains as if they
were decoupled. We then treat the interchain couplings with the aid of (6.108)
in perturbation theory.

The low energy limit Hamiltonian then takes the form

Hcont
2−leg = H1

WZW +H2
WZW + λ1

∫
dx
(
(J1

R + J1
L) · (J2

R + J2
L)
)

+

λ2

∫
dx
(
tr(σg1) · tr(σg2)

)
,(6.142)

where λ1,2 ∝ J ′/J .
The key observation here is that the free theory (J ′ = 0) corresponds to

two SU(2)1 WZW factors and this CFT theory can be conformally embedded
into

SU(2)1 ⊗ SU(2)1 ⊃ SU(2)2 ⊗ Z2 , (6.143)

where SU(2)2 stands for the level 2 WZW theory and Z2 corresponds to the
Ising CFT.

This last equation does not indicate the complete equivalence of the theory
on the r.h.s. with that on the l.h.s. What is true is that both theories have
the same conformal central charge and all the primary fields of the theory
on the l.h.s. are contained in the r.h.s theory. The idea is to try to map all
the interaction terms into the new language, which in fact turns out to be
possible in this case (though it is not generically true).

One can write the interaction terms in (6.142) using this embedding and
the outcome is quite nice, since the two sectors are decoupled from each other,
each of them with their respective mass terms.
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There are two kinds of interaction terms in (6.142), the first being the
current-current terms, which have the effect of renormalizing the effective
Fermi velocity to first order apart from marginal terms. We then have the
more relevant terms which are the product of the two WZW fields.

To study the effect of these relevant terms we use the conformal embed-
ding mentioned above. The first observation is that the product of the WZW
fields in the two SU(2)1 sectors has scaling dimension 1 and should hence be
writable in terms of dimension 1 operators in the Ising and SU(2)2 WZW
sectors. In this way, one obtains the following correspondence

tr(σg1) · tr(σg2) = tr(Φj=1)− 3 ε , (6.144)

which can be proved by comparing the operator product expansions of the
operators on the left and right hand sides. In the above equation, the field
Φj=1 is the spin 1 field in the WZW theory SU(2)2 and ε is the energy
operator in the Ising sector, which can be described by one Majorana fermion.

We can then conclude that the Ising sector, being perturbed by the energy
operator, has a mass m1 proportional to J ′/J .

This theory can be further simplified by noticing that the level 2 SU(2)
WZW theory can be equivalently described as three Majorana fermions. In
this new language, the corresponding interaction term, tr(Φj=1) simply pro-
vides the mass m2 for these Majorana fermions, which is different from m1
and again proportional to J ′/J . The ratio between the masses of the different
Ising sectors has been fixed using Abelian bosonization in [32], showing that
m1/m2 = −3.

The effective Hamiltonian can then be written as

Heff
2−leg = − i

2
(ζR∂xζR − ζL∂xζL)− im1ζRζL

+
3∑

a=1

(
− i

2
(ξa

R∂xξ
a
R − ξa

L∂xξ
a
L)− im2ξ

a
Rξ

a
L

)
, (6.145)

apart from marginal terms coming from the current-current interactions.
A similar result can be obtained using Abelian bosonization as in [32].

Different modifications of the two leg ladder considered here, as the inclusion
of dimerization, extra diagonal couplings between the chains, etc. can be
treated using the same formalism.

6.9.8 Higher Spin Chains: Non-abelian Bosonization

In the case of the Heisenberg antiferromagnet with higher values of the spin S
one can still represent the spin variables in terms of fermions, which now carry
an extra internal (color) index. The generalization of (6.137) for arbitrary S
reads
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Sn =
2S∑

i=1

∑

α,β=↑,↓
c†αin

σαβ

2
cβin, (6.146)

where cαin are fermionic variables with α the spin index, i = 1, ..., 2S the
extra color index and n the site index respectively. As before, σαβ are the
Pauli matrices.

In this case, non-abelian bosonization is more suitable to deal with the low
energy theory. This approach has been first introduced in [39] (see also [40]).
Here we follow the path-integral approach presented in [41], which is more
suitable for our purposes.

In order to correctly represent the spin S chain, the physical states |phys〉
must satisfy at each lattice site the constraints

∑

i

c†αincαin|phys〉 = 2S|phys〉
∑

i,j

c†αinτ
a
ijcαjn|phys〉 = 0, (6.147)

where τa are the generators of the SU(2S) algebra. The first constraint im-
poses the condition that allows only one spin per site, whereas the second
one states that the physical states must be color singlets.

The Heisenberg Hamiltonian (6.56) with spin operators satisfying (6.1)
with ∆ = 1 and h = 0, can then be expressed as

H = −1
2

∑

n

c†αincαjn+1c
†
βjn+1cβin + constant (6.148)

which has a local SU(2S) × U(1) local gauge invariance introduced by the
parametrization (6.146). This quartic interaction can be rewritten by intro-
ducing an auxiliary field B as

H =
1
2

∑

n

(Bij
n,n+1c

†
αincαjn+1 +H.c.+ B̄ji

n+1,nB
ij
n,n+1). (6.149)

To obtain an effective low energy theory we perform a mean field approxi-
mation taking B as a constant 2S × 2S matrix whereafter H can then be
diagonalized. We then introduce the fluctuations around this mean solution,
which we are able to integrate in a path-integral setup.

We write each color fermion as in (6.65)

ψiα(x)√
a

≈ eikF xψL,iα(x) + e−ikF xψR,iα(x) , (6.150)

with kF = π/2 and expand the auxiliary field around its mean field value,
keeping the fluctuations to first order in the lattice spacing, since we are
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interested in the low energy dynamics

Bxy = B0e
aVxy � B0(1 + aVxy), (6.151)

We define the fields A1 ≡ 1
2 (Vxy − V †

xy) and Rxy ≡ 1
2 (Vxy + V †

xy) in the
algebra of U(2S) which are the fluctuation fields which we have to integrate
to obtain the effective low energy partition function. When substituted back
into the Hamiltonian, the expansion (6.151) leads to a quadratic integral in
Rxy which can be performed to give

H = B0

(
−iΨ†

R,iα(δij∂x +A1
ij)ΨR,jα + iΨ†

L,iα(δij∂x +A1
ij)ΨL,jα

)

+
1
4

(
Ψ †

L,iαΨR,jα − Ψ †
R,iαΨL,jα

)2
, (6.152)

where the last term arises from the integration over the R field.
In order to implement the constraints (6.147) we first rewrite them in

the continuum limit using (6.150). In terms of the continuum fermions the
constraints read

Ψ̄iαγ0Ψiα|phys〉 = 2S|phys〉 ,
Ψ̄iαγ0τijΨjα|phys〉 = 0 ,

Ψ̄iαΨjα|phys〉 = 0 for all i, j , (6.153)

where Ψ † = (ΨR, ΨL) and Ψ̄ = Ψ †γ0.
The first two constraints are implemented by introducing a Lagrange mul-

tiplier A0 in the Lie algebra of U(2S), which together with A1 in (6.152)
provide the two space-time components of a gauge field in U(2S). The third
constraint is instead imposed with the use of the identity (see [41] for details)

δ[Ψ̄iαΨjα] = lim
λ2→∞

e−λ2
∫

d2x (Ψ̄iαΨjα)2 . (6.154)

After some algebra, the effective Lagrangian reads

L = Ψ̄γµiDµΨ − λ1(iΨ̄iγ5Ψj)2 − λ2(iΨ̄iΨj)2, (6.155)

where the covariant derivative is defined as Dµ = ∂µ− iaµ +Bµ, and we have
decomposed, for later convenience, the U(2S) Aµ field into a U(1) field aµ

and a SU(2S) field Bµ.
The Lagrangian can be further rewritten as

L = Ψ̄iαγ
µi(∂µ − iaµδijδαβ +Bij

µ δαβ)Ψjβ

+4(λ1 + λ2)JR · JL + (λ1 + λ2)jRjL
−(λ1 − λ2)(Ψ

†
RiαΨLjαΨ

†
RjβΨLiβ +H.c.), (6.156)
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where

JR,L = Ψ †
R,Liα

σαβ

2
ΨR,Liβ

jR,L = iΨ†
R,LiαΨR,Liα (6.157)

are SU(2)2S and U(1) currents respectively.
For λ1 = λ2 = 0 we are left with the theory of 2S Dirac fermions coupled

to gauge fields in U(1) and SU(2S). Since these gauge fields have no dyna-
mics, they act as Lagrange multipliers and it can be shown that the resulting
theory corresponds to the fermionic realization of the coset model [42]

U(2S)
U(1)⊗ SU(2S)2

≡ SU(2)2S (6.158)

as was already observed in [41]. The third term can be absorbed by a redefi-
nition of the U(1) gauge field aµ.

The second and last terms in (6.156) can then be expressed as fields in
the resulting WZW theory SU(2)2S

∆L = (λ1 − λ2)
(
Φ

(1/2)
αβ Φ

(1/2)
βα +H.c.

)
+ 4(λ1 + λ2)JR · JL (6.159)

where we have identified the spin 1/2 primary field of the SU(2)2S WZW
theory, Φ(1/2), in terms of its fermionic constituents

Φ
(1/2)
αβ ≡ Ψ †

R,iαΨL,iβ (6.160)

which has conformal dimensions d = d̄ = 3/(8(S + 1)). The first term in
(6.159) corresponds then to the spin 1 affine primary Φ(1) with conformal
dimensions d = d̄ = 1/(S + 1), as can be seen after some simple algebra.

We can finally write

∆L = −4 (λ1 − λ2) tr Φ(1) + 4(λ1 + λ2)JR · JL (6.161)

For S = 1
2 we recover the effective model we derived in Sect. 9.3. In this

case, the first term in (6.161) is proportional to the identity operator and the
second is marginally irrelevant since λ1 + λ2 is positive and gives the well
known logarithmic corrections to correlators.

For higher spins, we have to consider the interaction term (6.161) and we
also have to include all other terms which are radiatively generated. We then
need the operator product expansion (OPE) coefficients among the different
components of Φ(1) which have been computed in [43]. The OPE coefficients
are non-vanishing if the so called “Fusion Rules” are non-vanishing. In the
level k SU(2) WZW theory they are given by [44]

Φ
(j)
m,m̄ × Φ

(j′)
m′,m̄′ =

min(j+j′,k−j−j′)∑

n=|j−j′|
Φ

(n)
m+m′,m̄+m̄′ (6.162)
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We can now make use of the following equivalence [43,45]

SU(2)k ≡ Zk ⊗ U(1) (6.163)

We will exploit this equivalence to derive an effective low energy action for
the spin S Heisenberg chain. Indeed, it was shown in [43] that the primary
fields of the SU(2)k WZW theory are related to the primaries of the Zk-
parafermion theory and the U(1) vertex operators. They are connected by
the relation

Φ
(j)
m,m̄(z, z̄) = φ

(2j)
2m,2m̄(z, z̄) : e

i√
2S

(mφR(z)+m̄φL(z̄)) :, (6.164)

where the Φ fields are the invariant fields of the SU(2)k WZW theory, the φ
fields are the Zk parafermion primaries and φR and φL are the holomorphic
and antiholomorphic components of a compact massless free boson field. In
the same way, the currents are related as

J+
R (z) = (2S)1/2ψ1(z) : exp

(
i√
2S

φR(z)
)

: ,

Jz
R(z) = (2S)1/2∂zφR(z) (6.165)

where J±
R = Jx

R ± iJy
R and ψ1 is the first parafermionic field. (A similar

relation holds for the left-handed currents).
Using this equivalence we can express the relevant perturbation term

(6.161) in the new language as

∆L = −4(λ1 − λ2)
(
φ

(2)
0,0 + φ

(2)
2,−2 : e

i√
2S

(φR(z)−φL(z̄)) :

+φ(2)
−2,2 : e− i√

2S
(φR(z)−φL(z̄)) :

)

+4S(λ1 + λ2)
(
ψ1ψ̄

†
1 : e

i√
2S

(φR(z)−φL(z̄)) : +H.c.
)
, (6.166)

where we absorbed the derivative part of the U(1) field coming from (6.165)
into a redefinition of the constant in front of the unperturbed Lagrangian.
The first term corresponds to the first “thermal” field of the parafermion
theory, φ(2)

0,0 = ε1, with conformal dimensions d = d̄ = 1/(1 + S), while the
second and third terms correspond to the p = 2 disorder operator in the PF
theory, φ(2)

2,−2 = µ2 and its adjoint φ(2)
−2,2 = µ†

2 with dimensions d2 = d̄2 =
(S−1)/(2S(S+1)). It is assumed that all the operators which are radiatively
generated have to be included in the complete effective theory.

We use now the fact that the Z2S PF theory perturbed by its first ther-
mal operator ε1 flows into a massive regime irrespectively of the sign of the
coupling [46]. Assuming that, as for the Z2 case, due to the sign of the cou-
pling λ1 − λ2 in (6.166) the theory is driven into a low temperature ordered
phase, we have that vacuum expectation values (v.e.v.’s) of disorder operators
µj , vanish for j �= 2S mod(2S) as well as v.e.v.’s of the parafermionic fields
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〈ψkψ̄
†
k〉 = 0, for 2k �= 2S mod(2S). This will be important in the computation

of spin-spin correlation functions below.
Since the parafermionic sector is massive, the effective theory for large

scales can be obtained by integrating out these degrees of freedom. One can
obtain then the most general effective action for the remaining U(1) field, by
including all the vertex operators which are invariant under the symmetry
Z2S × Z̃2S [43]

φR → φR −
√

2πm√
S

; φL → φL −
√

2πn√
S

(6.167)

with m,n ∈ Z, which is preserved after the integration of the massive par-
afermions.

One obtains in this way the effective action for the remaining U(1) theory

Zeff =
∫

dφ exp
(
−
∫

KS(∂µφ)2+

αS

∫
cos(

√
S

2
(φR − φL)) + βS

∫
cos(

√
2S(φR − φL)) + · · ·

)
,

(6.168)

for S integer while αS vanishes for S half integer. Here the dots indicate
irrelevant fields corresponding to higher harmonics of the scalar field and KS

is an effective constant arising from the OPE of vertex and parafermionic
operators in the process of integration of the massive degrees of freedom.

Using the generalization of (6.65) to the case with 2S colors together
with (6.146), (6.157) and (6.160) we can write the continuum expression of
the original spin operator S(x) as

S(x) = JR + JL + const (−1)xtr(
σ

2
(Φ(1/2) + Φ(1/2)†)) , (6.169)

which is the generalization of (6.108) for arbitrary spin S.
Let us study the behavior of the spin-spin correlation function at large

scales, to see whether the system has a gap or not. In the new language of
(6.169), these correlators have a staggered and a non-staggered part which
correspond respectively to current-current correlators and correlators of the
components of the fundamental field Φ(1/2).

Let us focus on the staggered part of the SzSz correlator: Since our ori-
ginal SU(2) WZW model is perturbed, correlation functions of the funda-
mental field will contain supplementary operators coming from the OPE of
the product of Φ(1/2) and the perturbing fields. With the help of the fu-
sion rules (6.162) it is easy to see that, for example, the effective alternating
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z-component of the spin operator containing the scalar field will be given by:

∑

k≤2S, k odd

ak µk : e
ik

2
√

2S
(φR(z)−φL(z̄)) : +H.c., (6.170)

where only odd k fields appear in the sum.
For S half-integer, the operator Φ(S) is present in (6.170), and we can

easily check that, (since µ2S corresponds to the identity), this operator is
simply given by

e
iS√
2S

(φR−φL) +H.c.

The other operators in the series contain parafermionic disorder operators
whose correlators will decay exponentially to zero at large scales. Thus, con-
sidering only the Gaussian part of (6.168), we can show that the spin corre-
lation functions at large scales behave like:

〈Sz(x)Sz(y)〉 ∼ (−1)(x−y)|x− y|−2SKS

〈S+(x)S−(y)〉 ∼ (−1)(x−y)|x− y|−1/(2SKS) (6.171)

The fact that the SU(2) symmetry is unbroken at all scales fixes then the
value of KS to be

KS = 1/(2S) (6.172)

For this value of KS one can show that the perturbing operator with coupling
βS in (6.168) is marginally irrelevant (remember that αS = 0 in the half-
integer case).

We conclude then that the large scale behavior of half-integer spin chains
is given by the level 1 SU(2) WZW model with logarithmic corrections as for
the spin 1/2 chain.

Let us consider now integer spins S. Since the series (6.170) for the ef-
fective spin operator contains only half-integer spins j (odd k’s), all the ope-
rators in the series will contain non-trivial parafermionic operators. Then
all the terms in the spin-spin correlation function will decay exponentially
to zero with the distance indicating the presence of a gap in the excitation
spectrum, thus confirming Haldane’s conjecture.

6.9.9 N-Leg Ladders in a Magnetic Field:
Gap for Non-zero Magnetization

Another interesting situation is the one of antiferromagnetic spin ladders
which we have already studied in Sect. 7 using NLSM techniques in the SU(2)
symmetric case. The Hamiltonian for coupled XXZ chains in the presence
of a magnetic field is a generalization of that presented in (6.141) [18]
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H latt
N−ladder =

N∑

a=1

H
(a)
XXZ + J ′

a=N∑

n,a=1

Sa
n · Sa+1

n − h
∑

i,n

Sa,z
n , (6.173)

where H
(a)
XXZ is given by an expression like (6.56) for each chain labeled by

a.
For J ′ = 0 one can map the low energy sector of each XXZ chain into

a bosonic field theory as described in Sect. 9. One obtains in this way an
effective description which consists in a collection of identical Hamiltonians
like (6.57), with N bosonic fields, φa, describing the low energy dynamics of
chain a, a = 1, · · · , N . The interchain exchanges give rise to perturbation
terms which couple the fields of the different chains.

In the case in which many chains are considered, one has to introduce as
many different Klein factors as the number of chains considered for both right
and left components, ηa

R, ηa
L, a = 1, ..., N , to ensure the correct commutation

relations between spin fields (see (6.71) for the case of a single chain). In
the present case, the interactions contain generically products of four Klein
factors of the form

tijkl ≡ ηiηjηkηl (6.174)

where the subindices here indicate the pair index (α, a), with α = R,L and a
the chain index. One can easily show using the Klein algebra, {ηi, ηj} = 2δij ,
that t2 = 1 when all indices are different and then these operators have
eigenvalues ±1. As discussed in [15], one could get rid of the t operators
which appear in the interaction terms (and hence bosonize completely the
problem) provided one can simultaneously diagonalize all the operators like
(6.174) appearing in a given situation. This in turn can be done if all these
operators are mutually commuting, which has to be studied for each case
separately. In the present situation this can be easily shown by noticing that
interchain interactions between a and b chains contain products of the form

ηa
Rη

a
Lη

b
Rη

b
L (6.175)

with a �= b, a, b = 1, ..., N and using the algebra of the Klein factors one can
show that they are all mutually commuting.

After a careful RG analysis, one can show that at most one degree of
freedom, given by the combination of fields φD =

∑
a φa, remains massless.

The large scale effective action for the ladder systems is then given again by
a Hamiltonian (6.57) for φD and the perturbation term

Hpert = λ

∫
dx cos(2NkFx+

√
2πφD) , (6.176)

where kF = (1 + 〈M〉)π/2 is related to the total magnetization 〈M〉.
The key point if to identify the values of the magnetization for which

the perturbation operator (6.176) can play an important rôle. In fact, this
operator is commensurate at values of the magnetization given by
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N/2(1− 〈M〉) ∈ Z , (6.177)

otherwise the integral over x will make this term vanish due to the fast
oscillations of the phase factor since the continuum fields are slowly varying.

If this operator turns out to be also relevant in the RG sense (this depends
on the parameters of the effective Hamiltonian (6.57), the model will have a
finite gap, implying a plateau in the magnetization curve.

Let us see how this condition can be obtained: in the weak-coupling limit
along the rungs, J ′ 
 J , the bosonized low-energy effective Hamiltonian for
the N -leg ladder reads

Hcont
N−ladder =

∫
dx

[
1
2

N∑

a=1

(
vaKa

(
∂xφ̃a(x)

)2
+

va

Ka
(∂xφa(x))2

)

+λ1

∑

a,b

(∂xφa(x)) (∂xφb(x))

+
∑

a,b

{
λ2 : cos(2(ka

F + kb
F )x+

√
2π(φa + φb)) : (6.178)

+λ3 : cos
(
2(ka

F − kb
F )x+

√
2π(φa − φb)

)
: +λ4 : cos

(√
2π(φ̃a − φ̃b)

)
:
}]

,

where only the most relevant perturbation terms are kept. The four coupling
constants λi essentially correspond to the coupling J ′ between the chains:
λi ∼ J ′/J . In arriving to the Hamiltonian (6.178) we have discarded a con-
stant term and absorbed a term linear in the derivatives of the free bosons
into a redefinition of the applied magnetic field. For simplicity we have used
here periodic boundary conditions (PBC’s) along the transverse direction.

Note that the λ2 and λ3 perturbation terms contain an explicit depen-
dence on the position (in the latter case this x-dependence disappears for
symmetric configurations with equal ki

F ). Such operators survive in passing
from the lattice to the continuum model, assuming that the fields vary slo-
wly, only when they are commensurate. In particular, the λ2 term appears
in the continuum limit only if the oscillating factor exp(i2x(ki

F +kj
F )) equals

unity. If the configuration is symmetric, this in turn happens only for zero
magnetization (apart from the trivial case of saturation).

Let us describe this in some detail for the case of the three leg ladder,
N = 3. In this case we first diagonalize the Gaussian (derivative) part of the
Hamiltonian by the following change of variables in the fields:

ψ1 =
1√
2

(φ1 − φ3) , ψ2 =
1√
6

(φ1 + φ3 − 2φ2) , ψD =
1√
3

(φ1 + φ2 + φ3) .

(6.179)

In terms of these fields the derivative part of the Hamiltonian can be written
as:
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H̄der. =
vK

2

∫
dx
[
(1 + a) (∂xψD(x))2 + (1− b)

(
(∂xψ1(x))2 + (∂xψ2(x))2

)]

(6.180)

where a = J ′K/J = 2b. We can now study the large-scale behaviour of
the effective Hamiltonian (6.178) where we assume all ki

F equal due to the
symmetry of the chosen configuration of couplings. Let us first consider the
case when the magnetization 〈M〉 is non-zero. In this case only the λ3 and
λ4 terms are present. The one-loop RG equations are:

dK

d ln (L)
= −2K2 λ2

3 + 2λ2
4

dλ3

d ln (L)
=
(

2− K

(1− b)

)
λ3 − πλ2

3

dλ4

d ln (L)
=
(

2− (1− b)
K

)
λ4 − πλ2

4 . (6.181)

It is important to notice that only the fields ψ1 and ψ2 enter in these RG
equations, since the perturbing operators do not contain the field ψD. The
behaviour of these RG equations depends on the value of K. The main point
is that always one of the two λ perturbation terms will dominate and the
corresponding cosine operator tends to order the associated fields. This gives
a finite correlation length in correlation functions containing the fields ψ1 and
ψ2 (or their duals). For example, for∆ ≤ 1 we have thatK > 1 since 〈M〉 �= 0.
Then, from (6.181) one can easily see that the dominant term will be the λ4
one. This term orders the dual fields associated with ψ1 and ψ2. Then, the
correlation functions involving these last fields decay exponentially to zero.
In either case, the field ψD remains massless. In the case of open boundary
conditions the situation is similar and again it is the diagonal field the one
which stays generically massless, in spite of the asymmetry of the Gaussian
part of the action.

A more careful analysis of the original Hamiltonian shows that this dia-
gonal field will be coupled to the massive ones only through very irrelevant
operators giving rise to a renormalization of its Luttinger parameter K. Ho-
wever, due to the strong irrelevance of such coupling terms these corrections
to K are expected to be small, implying that its large-scale effective value
stays close to the zero-loop result.

At the values of the magnetization where this operator is commensurate,
the field ψD can then undergo a K-T transition to a massive phase, indicating
the presence of a plateau in the magnetization curve. An estimate of the value
of J ′ at which this operator becomes relevant can be obtained from its scaling
dimension. In the zero-loop approximation and for ∆ = 1 one then obtains
J ′

c ≈ 0.09J for the 〈M〉 = 1/3 plateau at N = 3.
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Appendix: The Scalar Boson in 2D,
a c = 1 Conformal Field Theory

Primary Field Content and Correlators

The action for the scalar Euclidean boson is

S(φ) =
g

2

∫
d2x (∂µφ)2 (6.182)

and in condensed matter applications g is related to the Luttinger parameter
as g = 1/K and hence contains the information about the interactions.

This action is invariant under constant translations of the field

φ(x) → φ′(x) = φ(x) + α , (6.183)

with the corresponding conserved current Jµ(x) = ∂µφ(x). There exists ano-
ther (trivially) conserved current J̃µ(x) = ενµ∂νφ(x) (usually referred to as
“topological” current).

The corresponding Hamiltonian reads

H =
1
2

∫
dx

(
1
g
Π(x)2 + g (∂xφ)2

)
, (6.184)

where the wave propagation velocity has been set to 1 and the canonical
conjugate momentum Π ≡ δL/δφ̇ = gφ̇. The dual field φ̃ which is usually
defined for convenience, since it allows to write certain fields in a local way,
is related to Π as ∂xφ̃ = Π. One can eliminate g from (6.184) by making a
canonical transformation

φ′ =
√
gφ , Π ′ =

1
√
g
Π . (6.185)

The propagator is then given by

∆(z, z̄;w, w̄) ≡ 〈0|φ′(z, z̄)φ′(w, w̄)|0〉 = − 1
4π

logm2|z − w|2 (6.186)

where z = vτ + ix, z̄ = vτ − ix and m is a small mass which has been added
as an infrared regulator. Ultraviolet divergences are naturally regulated in
the problems we will be interested in by the lattice constant a. We will drop
the primes in the scalar fields from now on, but the reader should keep in
mind (6.185).

From this correlator one can read the chiral parts (φ(z, z̄) = φR(z) +
φL(z̄))

〈φR(z)φR(w)〉 = − 1
4π

logm(z − w) (6.187)
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and

〈φL(z̄)φL(w̄)〉 = − 1
4π

logm(z̄ − w̄) . (6.188)

In terms of the chiral components the dual field reads φ̃ = φR(z)− φL(z̄).
Taking derivatives from (6.187) one obtains

〈∂zφR(z)∂wφR(w)〉 = − 1
4π

1
(m(z − w))2

(6.189)

and similarly for the anti-holomorphic components.
The energy-momentum tensor for the free massless boson is

Tµν =:
(
∂µφ∂νφ−

1
2
ηµν∂ρφ∂ρφ

)
: , (6.190)

where the dots : : denote normal ordering defined by substracting the
singular part of the product when the arguments coincide.

Its holomorphic component reads

T ≡ −2πTzz = −2π : ∂φR∂φR := lim
z→w

(∂φR(z)∂φR(w)− 〈∂φR(z)∂φR(w)〉)
(6.191)

and similarly for the anti-holomorphic component T̄ (z̄).
The two point correlators of the energy-momentum tensor components

can be easily computed using (6.189) and (6.191) to give

〈T (z) T (w)〉 =
c/2

(m(z − w))4
, 〈T̄ (z̄) T̄ (w̄)〉 =

c/2
(m(z̄ − w̄))4

, (6.192)

with the numerical constant c = 1. These expressions define the central charge
of the model. Indeed, it can be shown that the modes of the energy momentum
tensor components T and T̄ satisfy respective Virasoro algebras with central
charge c = 1.

One usually defines vertex operators in terms of the chiral components of
the field φ as

Vα,ᾱ(z, z̄) =: exp (iαφR(z) + iᾱφL(z̄)) :=

: exp
(
i
(α+ ᾱ)

2
φ(z, z̄) + i

(α− ᾱ)
2

φ̃(z, z̄)
)

: , (6.193)

for arbitrary real numbers α and ᾱ, where normal ordering is defined as usual
and for the vertex operators we can write

: eiαφ : ≡ eiαφcreation eiαφannihilation (6.194)
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Their two-point functions are readily evaluated to give

〈
Vα,ᾱ(z, z̄)V †

α,ᾱ(w, w̄)
〉

=
1

(m(z − w))
α2
4π (m(z̄ − w̄))

ᾱ2
4π

. (6.195)

Since this expression is infrared divergent, one has to renormalize the vertex
operators in order to make their correlators IR finite

Vα,α(z, z̄)|ren ≡ m
α2
4π : e(iαφ(z,z̄)) : (6.196)

From (6.195) one can read off the conformal dimensions d and d̄ of Vα,ᾱ

d =
α2

8π
d̄ =

ᾱ2

8π
. (6.197)

The scaling dimension ∆ and the conformal spin S are defined as D = d+ d̄
and S = d − d̄ respectively. Below we will see how the restriction on the
conformal spin to be integer or half-integer restricts the possible values of α
and ᾱ.

Multipoint correlators are also easily evaluated and the general result is
(for simplicity we take αi = ᾱi)

〈
N∏

i=1

Vαi,αi(zi, z̄i)

〉∣∣∣∣∣
ren

=
∏

i<j

|zi − zj |
αiαj
2π , if

N∑

i=1

αi = 0 , (6.198)

and zero otherwise.
The neutrality condition

∑N
i=1 αi = 0 is necessary for the cancellation of

the renormalization constants. Otherwise the result vanishes in the zero mass
limit.

Compactified Free Boson

So far we have not imposed any condition on the bosonic variable φ. However,
in many applications in condensed matter systems, like in the XXZ chain
(see discussion below (6.81)), the bosonic variable is constrained to live on
a circle of radius R (usually called “compactification radius”), i.e. φ and
φ+ 2πR are identified at each space-time point. This condition restricts the
allowed values for the charges α to integer multiples of 1/R in order for the
operators to be well defined. If one further imposes that the conformal spins
have to be integers (to ensure single-valuedness of correlators) then the dual
field φ̃ is compactified with R̃ = 1

2πgR and the allowed charges are restricted
to the set

{(α, ᾱ)} = {(n/R + 2πgmR, n/R− 2πgmR), n,m ε Z} (6.199)
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which correpond to fields with conformal dimensions

hn,m = 2πg
(

n

4πgR
+

1
2
mR

)2

, h̄n,m = 2πg
(

n

4πgR
− 1

2
mR

)2

.

(6.200)

Notice that the theory is dual under the transformation R↔ 1
2πgR , which

amounts to the interchange of the so called electric and magnetic charges
(respectively n and m in (6.200)).
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XLIX, eds. E. Brézin, J. Zinn-Justin (North-Holland, Amsterdam, 1988).
5. G. Sierra, Lectures Notes In Physics, Vol. 478, eds. G. Sierra and M.A. Martin-

Delgado, Springer-Verlag (1997).
6. A.M. Polyakov, Gauge Fields and Strings, Harwood Academic Publishers

(1987).
7. A.B. Zamolodchikov, Al.B. Zamolodchikov, Nucl. Phys. B133, 525 (1978).
8. J. Cardy, Scaling and Renormalization in Statistical Physics, Cambridge Uni-

versity Press (1996).
9. R. Shankar, N. Read, Nucl. Phys. B336, 457 (1990).

10. F.M.D. Haldane, Phys. Lett. A93, 464 (1983); Phys. Rev. Lett. 50, 1153
(1983); J. Appl. Phys. 57, 3359 (1985).

11. T. Dombre, N. Read, Phys. Rev. B39, 6797 (1989).
12. F. Wilczek, A. Zee, Phys. Rev. Lett. 51, 2250(1983).
13. F.M.D. Haldane, Phys. Rev. Lett. 61, 1029 (1988).
14. A.O. Gogolin, A.A. Nersesyan and A.M. Tsvelik, Bosonization and Strongly

Correlated Electron Systems, Cambridge University Press, Cambridge (1998).
15. H.J. Schulz, Int. J. Mod. Phys. B5, 57 (1991); p. 533 in Proceedings of Les

Houches Summer School LXI, eds. E. Akkermans, G. Montambaux, J. Pichard
and J. Zinn-Justin (Elsevier, Amsterdam, 1995).

16. J. Voit, Rep. Prog. Phys. 58, 977 (1995).
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