ROMANIELLO Pina

CNRS research director

pina.romaniello(at)irsamc.ups-tlse.fr

+33 (0)5 61 55 75 74

332 3R1B4 building

My scientific work can be regrouped into two main research lines:

  • Formal developments, implementation, and applications in (time-dependent) density functional theory (DFT)
  • Formal developments, implementation, and applications in many-body perturbation theory (MBPT) based on Green’s functions

DFT and MBPT are two state-of-the-art frameworks for the description and prediction of material properties, such as photoemission, optical absorption and metal-insulator transitions. In particular I am interested in the description of strongly correlated materials, which physics is difficult to capture using standard approximations.

 

Latest publications

 

Current team members

  • Stefano PAGGI (PhD, ANR): Stefano has joined our team in 2023 for a three year PhD. He will extend the formalism based on the three-body Green’s function derived by Gabriele RIVA for photoemission to other spectroscopies.

  • Pierre  SELLIE (Master 2, ANR): Pierre has just joined our team. He will extend the formalism based on the three-body Green’s function derived by Gabriele RIVA for photoemission to other spectroscopies.

 

Past team members

  • Roberto ORLANDO (PhD)
  • Gabriele RIVA (PhD/Postdoc)
  • Théodore FISCHER (M1)
  • Stefano DI SABATINO (post-doc)
  • Emma NOGUE (M2)
  • Julien PRODHON (M1)
  • Jaakko KOSKELO (post-doc)
  • Rubén R. FERRADÁS (post-doc)
  • Sarah CAVO (M1)
  • Stefano DI SABATINO (PhD)
  • Nathaniel RAIMBAULT (PhD)
  • Nicolas VICTORIN (L3)
  • Nader SLAMA (M2)

My main current collaborations are:

J. Arjan Berger, Laboratoire de Chimie et de Physique Quantiques, Université de Toulouse (France)

Pierre-François Loos, Laboratoire de Chimie et de Physique Quantiques, Université de Toulouse (France)

Evgeny Kozik and Emma Nogué, King’s College London (UK)

Davide Sangalli, Istituto di struttura della materia CNR-ISM, Monterotondo Stazione (Italy)

Claudio Attaccalite, CINAM, Aix-Marseille Universit (France)

  • Full list of publications from Google Scholar
  • In the following the list of my publications on HAL
63 documents

Journal articles

  • Gabriele Riva, Théodore Fischer, Stefano Paggi, J. Arjan Berger, Pina Romaniello. Multichannel Dyson equations for even- and odd-order Green’s functions: Application to double excitations. Physical Review B, 2025, 111 (19), pp.195133. ⟨10.1103/PhysRevB.111.195133⟩. ⟨hal-05129669⟩
  • Antoine Marie, Pina Romaniello, Xavier Blase, Pierre-François Loos. Anomalous propagators and the particle-particle channel: Bethe-Salpeter equation. The Journal of Chemical Physics, 2025, 162 (13), pp.134105. ⟨10.1063/5.0250155⟩. ⟨hal-04794754⟩
  • Antoine Marie, Pina Romaniello, Pierre-François Loos. Anomalous propagators and the particle-particle channel: Hedin’s equations. Physical Review B, 2024, 110, pp.115155. ⟨10.1103/PhysRevB.110.115155⟩. ⟨hal-04609000⟩
  • Gabriele Riva, Pina Romaniello, Arjan Berger. Multichannel Dyson equation: derivation and analysis. Physical Review B, 2024, 110, pp.115140. ⟨10.1103/PhysRevB.110.115140⟩. ⟨hal-04766467⟩
  • Gabriele Riva, Pina Romaniello, Arjan Berger. The multi-channel Dyson equation: coupling many-body Green’s functions. Physical Review Letters, 2023, 131 (21), pp.216401. ⟨10.1103/PhysRevLett.131.216401⟩. ⟨hal-04279783⟩
  • Roberto Orlando, Pina Romaniello, Pierre-François Loos. The three channels of many-body perturbation theory: $GW$, particle-particle, and electron-hole $T$-matrix self-energies. The Journal of Chemical Physics, 2023, 159 (18), pp.184113. ⟨10.1063/5.0176898⟩. ⟨hal-04201951⟩
  • Stefano Di Sabatino, Alejandro Molina-Sanchez, Pina Romaniello, Davide Sangalli. Assignment of excitonic insulators in ab initio theories: The case of NiBr2. Physical Review B, 2023, 107 (11), pp.115121. ⟨10.1103/PhysRevB.107.115121⟩. ⟨hal-04075936⟩
  • Stefano Di Sabatino, Jaakko Koskelo, Arjan Berger, Pina Romaniello. Screened extended Koopmans’ theorem: photoemission at weak and strong correlation. Physical Review B, 2023, 107 (3), pp.035111. ⟨10.1103/PhysRevB.107.035111⟩. ⟨hal-03831819⟩
  • Stefano Di Sabatino, Jaakko Koskelo, Arjan Berger, Pina Romaniello. Introducing screening in one-body density matrix functionals: Impact on charged excitations of model systems via the extended Koopmans’ theorem. Physical Review B, 2022, 105 (23), pp.235123. ⟨10.1103/PhysRevB.105.235123⟩. ⟨hal-03771081⟩
  • Pierre-Francois Loos, Pina Romaniello. Static and Dynamic Bethe-Salpeter Equations in the $T$-Matrix Approximation. The Journal of Chemical Physics, 2022, 156 (16), pp.164101. ⟨10.1063/5.0088364⟩. ⟨hal-03578293⟩
  • Gabriele Riva, Timothee Audinet, Matthieu Vladaj, Pina Romaniello, Arjan Berger. Photoemission spectral functions from the three-body Green’s function. SciPost Physics, 2022, 12 (3), pp.093. ⟨10.21468/SciPostPhys.12.3.093⟩. ⟨hal-03683895⟩
  • Andrew Michael Teale, Trygve Helgaker, Andreas Savin, Carlo Adano, Bálint Aradi, et al.. DFT Exchange: Sharing Perspectives on the Workhorse of Quantum Chemistry and Materials Science. Physical Chemistry Chemical Physics, 2022, 24 (47), pp.28700-28781. ⟨10.1039/D2CP02827A⟩. ⟨hal-03770771⟩
  • Stefano Di Sabatino, Pierre-Francois Loos, Pina Romaniello. Scrutinizing GW-Based Methods Using the Hubbard Dimer. Frontiers in Chemistry, 2021, 9, pp.751054. ⟨10.3389/fchem.2021.751054⟩. ⟨hal-03315304⟩
  • Stefano Di Sabatino, Jaakko Koskelo, Julien Prodhon, Arjan Berger, Michel Caffarel, et al.. Photoemission Spectra from the Extended Koopman’s Theorem, Revisited. Frontiers in Chemistry, 2021, 9, pp.746735. ⟨10.3389/fchem.2021.746735⟩. ⟨hal-03448633⟩
  • Stefano Di Sabatino, Claudio Verdozzi, Pina Romaniello. Time dependent reduced density matrix functional theory at strong correlation: insights from a two-site Anderson impurity model. Physical Chemistry Chemical Physics, 2021, 23 (31), pp.16730-16738. ⟨10.1039/D1CP01742J⟩. ⟨hal-03342208⟩
  • Stefano Di Sabatino, Jaakko Koskelo, Arjan Berger, Pina Romaniello. Photoemission spectrum in paramagnetic FeO under pressure: Towards an ab initio description. Physical Review Research, 2021, 3 (1), pp.013172. ⟨10.1103/PhysRevResearch.3.013172⟩. ⟨hal-03178936⟩
  • Arjan Berger, Pierre-Francois Loos, Pina Romaniello. Potential energy surfaces without unphysical discontinuities: the Coulomb-hole plus screened exchange approach. Journal of Chemical Theory and Computation, 2021, 17 (1), pp.191-200. ⟨10.1021/acs.jctc.0c00896⟩. ⟨hal-02928385⟩
  • Jan Gerit Brandenburg, Kieron Burke, Bartolomeo Civalleri, Daniel Cole, Gábor Csányi, et al.. Challenges for large scale simulation: general discussion. Faraday Discussions, 2020, 224, pp.309-332. ⟨10.1039/D0FD90024A⟩. ⟨hal-03961436⟩
  • Jan Gerit Brandenburg, Kieron Burke, Emmanuel Fromager, Matteo Gatti, Sara Giarrusso, et al.. New approaches to study excited states in density functional theory: general discussion. Faraday Discussions, 2020, 224 (1-2), pp.483-508. ⟨10.1039/D0FD90026E⟩. ⟨hal-03961430⟩
  • Jan Gerit Brandenburg, Kieron Burke, Antonio Cancio, Jannis Erhard, Emmanuel Fromager, et al.. New density-functional approximations and beyond: general discussion. Faraday Discussions, 2020, 224, pp.166-200. ⟨10.1039/D0FD90023K⟩. ⟨hal-03525539⟩
  • Stefano Di Sabatino, Arjan Berger, Pina Romaniello. Optical spectra of 2D monolayers from time-dependent density functional theory. Faraday Discussions, 2020, 224, pp.467-482. ⟨10.1039/D0FD00073F⟩. ⟨hal-03031574⟩
  • Sarah Cavo, Arjan Berger, Pina Romaniello. Accurate optical spectra of solids from pure time-dependent density-functional theory. Physical Review B: Condensed Matter and Materials Physics (1998-2015), 2020, 101 (11), pp.115109. ⟨10.1103/PhysRevB.101.115109⟩. ⟨hal-02367294⟩
  • Stefano Di Sabatino, Arjan Berger, Pina Romaniello. Many-Body Effective Energy Theory: Photoemission at Strong Correlation. Journal of Chemical Theory and Computation, 2019, 15 (9), pp.5080-5086. ⟨10.1021/acs.jctc.9b00427⟩. ⟨hal-02308390⟩
  • Mickaël Veril, Pina Romaniello, Arjan Berger, Pierre-François Loos. Unphysical Discontinuities in GW Methods. Journal of Chemical Theory and Computation, 2018, 14 (10), pp.5220-5228. ⟨10.1021/acs.jctc.8b00745⟩. ⟨hal-01912209⟩
  • Ruben Ferradás, Arjan Berger, Pina Romaniello. Optical properties from time-dependent current-density-functional theory: the case of the alkali metals Na, K, Rb, and Cs. The European Physical Journal B: Condensed Matter and Complex Systems, 2018, 91 (6), pp.119. ⟨10.1140/epjb/e2018-90122-9⟩. ⟨hal-01834294⟩
  • Pierre-François Loos, Pina Romaniello, Arjan Berger. Green Functions and Self-Consistency: Insights From the Spherium Model. Journal of Chemical Theory and Computation, 2018, 14 (6), pp.3071-3082. ⟨10.1021/acs.jctc.8b00260⟩. ⟨hal-01802937⟩
  • Walter Tarantino, Bernardo S. Mendoza, Pina Romaniello, Arjan Berger, Lucia Reining. Many-body perturbation theory and non-perturbative approaches: screened interaction as the key ingredient. Journal of Physics: Condensed Matter, 2018, 30 (13), pp.135602. ⟨10.1088/1361-648X/aaaeab⟩. ⟨hal-01743001⟩
  • Walter Tarantino, Pina Romaniello, Arjan Berger, Lucia Reining. Self-consistent Dyson equation and self-energy functionals: An analysis and illustration on the example of the Hubbard atom. Physical Review B: Condensed Matter and Materials Physics (1998-2015), 2017, 96 (4), pp.045124. ⟨10.1103/PhysRevB.96.045124⟩. ⟨hal-01583906⟩
  • Davide Sangalli, Arjan Berger, Claudio Attaccalite, Myrta Gruning, Pina Romaniello. Optical properties of periodic systems within the current-current response framework: pitfalls and remedies. Physical Review B: Condensed Matter and Materials Physics (1998-2015), 2017, 95 (15), pp.155203. ⟨10.1103/PhysRevB.95.155203⟩. ⟨hal-01444894⟩
  • Stefano Di Sabatino, Arjan Berger, Lucia Reining, Pina Romaniello. Photoemission spectra from reduced density matrices: The band gap in strongly correlated systems. Physical Review B: Condensed Matter and Materials Physics (1998-2015), 2016, 94, pp.155141. ⟨10.1103/PhysRevB.94.155141⟩. ⟨hal-01418336⟩
  • Nathaniel Raimbault, Paul L. de Boeij, Pina Romaniello, Arjan Berger. Gauge-Invariant Formulation of Circular Dichroism. Journal of Chemical Theory and Computation, 2016, 12 (7), pp.3278-3283. ⟨10.1021/acs.jctc.6b00068⟩. ⟨hal-01358881⟩
  • Adrian Stan, Pina Romaniello, Santiago Rigamonti, Lucia Reining, Arjan Berger. Unphysical and physical solutions in many-body theories: from weak to strong correlation. New Journal of Physics, 2015, 17 (9), pp.093045. ⟨10.1088/1367-2630/17/9/093045⟩. ⟨hal-01222216⟩
  • Stefano Di Sabatino, Arjan Berger, Lucia Reining, Pina Romaniello. Reduced density-matrix functional theory: Correlation and spectroscopy. The Journal of Chemical Physics, 2015, 143 (2), pp.024108. ⟨10.1063/1.4926327⟩. ⟨hal-01191716⟩
  • Nathaniel Raimbault, Paul L. de Boeij, Pina Romaniello, Arjan Berger. Gauge-Invariant Calculation of Static and Dynamical Magnetic Properties from the Current Density. Physical Review Letters, 2015, 114, pp.066404. ⟨10.1103/PhysRevLett.114.066404⟩. ⟨hal-01117338⟩
  • José M. Escartín Esteban, Marc Vincendon, Phuong Mai Dinh, Pina Romaniello, Paul-Gerhard Reinhard, et al.. Towards time-dependent current-density-functional theory in the non-linear regime. The Journal of Chemical Physics, 2015, 142 (8), pp.084118. ⟨10.1063/1.4913291⟩. ⟨hal-01135982⟩
  • Arjan Berger, Pina Romaniello, Falk Tandetzky, Bernardo S. Mendoza, Christian Brouder, et al.. Solution to the many-body problem in one point. New Journal of Physics, 2014, 16, pp.113025. ⟨10.1088/1367-2630/16/11/113025⟩. ⟨hal-01117310⟩
  • Arjan Berger, Pina Romaniello, Falk Tandetzky, Bernardo S Mendoza, Christian Brouder, et al.. Erratum: Solution to the many-body problem in one point. New Journal of Physics, 2014, 16 (11), pp.113025. ⟨10.1088/1367-2630/16/11/119601⟩. ⟨hal-01117926⟩
  • Marc Vincendon, Phuong Mai Dinh, Pina Romaniello, P. G. Reinhard, Eric Suraud. Photoelectron spectra from full time dependent self-interaction correction. The European Physical Journal D : Atomic, molecular, optical and plasma physics, 2013, 67 (5), pp.97. ⟨10.1140/epjd/e2013-30461-7⟩. ⟨hal-00983461⟩
  • Phuong Mai Dinh, Pina Romaniello, P.-G. Reinhard, Eric Suraud. Calculation of photoelectron spectra: A mean-field-based scheme. Physical Review A : Atomic, molecular, and optical physics [1990-2015], 2013, 87 (3), pp.032514. ⟨10.1103/PhysRevA.87.032514⟩. ⟨hal-00983353⟩
  • José M. Escartín Esteban, Pina Romaniello, L. Stella, Paul-Gerhard Reinhard, Eric Suraud. On transition rates in surface hopping. The Journal of Chemical Physics, 2012, 137, pp.234113. ⟨10.1063/1.4770280⟩. ⟨hal-00772707⟩
  • Pina Romaniello, Friedhelm Bechstedt, Lucia Reining. Beyond the GW approximation: combining correlation channels. Physical Review B: Condensed Matter and Materials Physics (1998-2015), 2012, 85 (15), pp.155131. ⟨10.1103/PhysRevB.85.155131⟩. ⟨hal-00690287⟩
  • Giovanna Lani, Pina Romaniello, Lucia Reining. Approximations for many-body Green’s functions: insights from the fundamental equations. New Journal of Physics, 2012, 14, pp.013056. ⟨10.1088/1367-2630/14/1/013056⟩. ⟨hal-00664609⟩
  • Matteo Guzzo, Giovanna Lani, Francesco Sottile, Pina Romaniello, Matteo Gatti, et al.. Valence Electron Photoemission Spectrum of Semiconductors: Ab Initio Description of Multiple Satellites. Physical Review Letters, 2011, 107 (16), pp.166401. ⟨10.1103/PhysRevLett.107.166401⟩. ⟨hal-00659118⟩
  • Davide Sangalli, Pina Romaniello, Giovanni Onida, Andrea Marini. Double excitations in correlated systems: A many–body approach. The Journal of Chemical Physics, 2011, 134, pp.034115. ⟨10.1063/1.3518705⟩. ⟨hal-00564857⟩
  • Pina Romaniello, M. C. d’Andria, F. Lelj. Nonlinear Optical Properties of Ni(Me6pzS2)MX (M = Ni, Pd, Pt; X = Me2timdt, mnt). Journal of Physical Chemistry A, 2010, 114 (18), pp.5838-5845. ⟨10.1021/jp911353n⟩. ⟨hal-00562674⟩
  • Pina Romaniello, Davide Sangalli, Arjan Berger, Francesco Sottile, Luca G. Molinari, et al.. Double excitations in finite systems. The Journal of Chemical Physics, 2009, 130 (4), pp.044108. ⟨hal-00990148⟩
  • Pina Romaniello, Steve Guyot, Lucia Reining. The self-energy beyond GW: Local and nonlocal vertex corrections. The Journal of Chemical Physics, 2009, 131 (15), pp.154111. ⟨hal-00990134⟩
  • Pina Romaniello, P. de Boeij. Relativistic two-component formulation of time-dependent current-density functional theory: Application to the linear response of solids. The Journal of Chemical Physics, 2007, 127 (17), ⟨10.1063/1.2780146⟩. ⟨hal-04931934⟩
  • Pina Romaniello, Francesco Lelj, Massimiliano Arca, Francesco A. Devillanova. Structural and new spectroscopic properties of neutral $[\hbox{M(dmit)}_{\bf 2}] (\hbox{dmit} = \hbox{C}_{\bf 3} \hbox{S}_{\bf 5}^{\bf 2-}$ , 1,3-dithiole-2-thione-4,5-dithiolate) and $[\hbox{M}(\hbox{H}_{\bf 2}\hbox{timdt})_{\bf 2}](\hbox{H}_{\bf 2}\hbox{timdt} = \hbox{H}_{\bf 2} \hbox{C}_{\bf 3} \hbox{N}_{\bf 2} \hbox{S}_{\bf 3}^{\bf 1-}$ , monoanion of imidazolidine-2,4,5-trithione) complexes within the density functional approach. Theoretical Chemistry Accounts: Theory, Computation, and Modeling, 2007, 117 (5-6), pp.621-635. ⟨10.1007/s00214-006-0194-1⟩. ⟨hal-04931983⟩
  • J. Berger, Pina Romaniello, R. van Leeuwen, P. de Boeij. Performance of the Vignale-Kohn functional in the linear response of metals. Physical Review B, 2006, 74 (24), pp.245117. ⟨10.1103/PhysRevB.74.245117⟩. ⟨hal-04932005⟩
  • Pina Romaniello, P. de Boeij, F. Carbone, D. van der Marel. Optical properties of bcc transition metals in the range 0 – 40 eV. Physical Review B, 2006, 73 (7), pp.075115. ⟨10.1103/PhysRevB.73.075115⟩. ⟨hal-04932018⟩
  • Pina Romaniello, P. de Boeij. Time-dependent current-density-functional theory for the metallic response of solids. Physical Review B, 2005, 71 (15), pp.155108. ⟨10.1103/PhysRevB.71.155108⟩. ⟨hal-04932060⟩
  • Pina Romaniello, Francesco Lelj. Effects of fluorine atoms on the optical nonlinear response of stilbene derivatives. Journal of Fluorine Chemistry, 2004, 125 (2), pp.145-149. ⟨10.1016/j.jfluchem.2003.10.002⟩. ⟨hal-04932070⟩
  • Pina Romaniello, M. Aragoni, M. Arca, T. Cassano, C. Denotti, et al.. Ground and Excited States of [M(H 2 timdt) 2 ] Neutral Dithiolenes (M = Ni, Pd, Pt; H 2 timdt = Monoanion of Imidazolidine-2,4,5-trithione): Description within TDDFT and Scalar Relativistic (ZORA) Approaches. Journal of Physical Chemistry A, 2003, 107 (45), pp.9679-9687. ⟨10.1021/jp034758r⟩. ⟨hal-04932108⟩
  • Pina Romaniello, Francesco Lelj. Limits in the second-order response of [M(H2imXdt) (H2imYdt)] neutral complexes (M=Ni, Pd, Pt; H2imXdt=monoanion of imidazolidine-2-chalcogenone-4,5-dithione; X=O, S, Se; Y=O, S, Se; X≠Y): a pure theoretical study based on TD-DFT approach and ZORA formalism. Journal of Molecular Structure: THEOCHEM, 2003, 636 (1-3), pp.23-37. ⟨10.1016/S0166-1280(03)00349-X⟩. ⟨hal-04932111⟩
  • M. Carla Aragoni, Massimiliano Arca, Tiziana Cassano, Carla Denotti, Francesco A. Devillanova, et al.. NIR Dyes Based on [M(R,R′timdt) 2 ] Metal‐Dithiolenes: Additivity of M, R, and R′ Contributions To Tune the NIR Absorption (M = Ni, Pd, Pt; R,R′timdt = Monoreduced Form of Disubstituted Imidazolidine‐2,4,5‐trithione). European Journal of Inorganic Chemistry, 2003, 2003 (10), pp.1939-1947. ⟨10.1002/ejic.200200602⟩. ⟨hal-04932121⟩
  • Pina Romaniello, Francesco Lelj. Optical non-linear properties of the [MXY] neutral mixed-ligand dithiolenes (M=Ni, Pd, Pt; X=R2timdt, dmit, mnt; Y=R2timdt, dmit, mnt; X≠Y). The role of coordinated metal, substituents and of high lying excited states. Chemical Physics Letters, 2003, 372 (1-2), pp.51-58. ⟨10.1016/S0009-2614(03)00356-7⟩. ⟨hal-04932131⟩
  • T. Cassano, R. Tommasi, L. Nitti, M. Aragoni, M. Arca, et al.. Picosecond absorption saturation dynamics in neutral [M(R,R′timdt)2] metal-dithiolenes. The Journal of Chemical Physics, 2003, 118 (13), pp.5995-6002. ⟨10.1063/1.1556612⟩. ⟨hal-04932142⟩
  • Pina Romaniello, Francesco Lelj. Halogen Bond in (CH 3 ) n X (X = N, P, n = 3; X = S, n = 2) and (CH 3 ) n XO (X = N, P, n = 3; X = S, n = 2) Adducts with CF 3 I. Structural and Energy Analysis Including Relativistic Zero-Order Regular Approximation Approach in a Density Functional Theory Framework. Journal of Physical Chemistry A, 2002, 106 (39), pp.9114-9119. ⟨10.1021/jp0255334⟩. ⟨hal-04932145⟩

Book sections

  • Roberto Orlando, Pina Romaniello, Pierre-Francois Loos. Chapter Eleven – Exploring new exchange-correlation kernels in the Bethe–Salpeter equation: A study of the asymmetric Hubbard dimer. Advances in Quantum Chemistry, 88, Elsevier, pp.183-211, 2023, 978-0-443-18663-9. ⟨10.1016/bs.aiq.2023.02.007⟩. ⟨hal-04604531⟩
  • Pina Romaniello. Hubbard Dimer in GW and Beyond. Eva Pavarini and Erik Koch (eds.). Simulating Correlations with Computers Modeling and Simulation, 11, 2021, 978-3-95806-529-1. ⟨hal-04932624⟩

Theses

  • Pina Romaniello. Time-dependent current-density-functional theory for metals. Physics [physics]. University of Groningen, 2006. English. ⟨NNT : ⟩. ⟨tel-04932053⟩

HDR thesis

  • Pina Romaniello. Correlation and spectroscopy in many-body theories. Physics [physics]. Université Toulouse III – Paul Sabatier, 2017. ⟨tel-04932222⟩

Short-CV:

• 2023-: CNRS Research director, Laboratoire de Physique Théorique, Université de Toulouse, France

• 2017: Accreditation to Supervise Research (HDR) in condensed matter, Université de Toulouse, France

• 2010-2023: CNRS Researcher, Laboratoire de Physique Théorique, Université de Toulouse, France

• 2008-2010: Postdoc, Laboratoire des Solides Irradiés, Ecole Polytechnique, France

• 2007-2008: Postdoc, Solid State Physics Theory Group, Università degli Studi di Milano, Italy

• 2006-2007: Postdoc, Theoretical Chemistry Group, Rijksuniversiteit Groningen, The Netherlands

• 2006: Ph.D. Mathematics and Natural Sciences, Rijksuniversiteit Groningen, The Netherlands

• 2001-2002: Assistant Researcher, Department of Chemistry at Università della Basilicata, Italy

• 2001: Master degree in Chemistry (cum laude), Università della Basilicata, Italy

• 2021, 2022, 2024: ‘Introduction to RDMFT”, International summer School in electronic structure Theory: electron correlation in Physics and Chemistry, Aussois

• 2022-2024: ‘‘An essential introduction to Density Functional Theory”, NanoX  International Master , Université de Toulouse

• 2021: ‘‘An essential introduction to Green’s function-based methods”, NanoX  International Master, Université de Toulouse

• 2021: Invited lecture ‘‘Hubbard dimer in GW and Beyond”, Autumn School on Correlated Electrons, online edition

• 2017-2024: Doctoral course ‘‘Cours avancé de la théorie de la fonctionnelle de la densité et ses extensions”, Université de Toulouse

• 2015-2023: Doctoral course ‘‘Méthodes perturbatives avancées pour la physique”, Université de Toulouse

• 2008: Tutorial for the course ‘‘Structure of matter”, Università degli Studi di Milano

In the following, you will find the list of my projects that have been funded. Here is a photo documentary that was created to showcase the different phases of a research project.

• 2022: ‘‘Correlated photoemission spectra from the three-body Green’s function”, ANR 2022; PI: P.Romaniello

• 2020: ‘‘Multireference Quasiparticles for strong correlation”, 80—Prime fellowship; PIs: P.-F. Loos and P. Romaniello

• 2019: ‘‘Theoretical description of Resonant Inelastic X-ray Scattering”, ANR 2019; PI: J.A. Berger; partner LPT: P.  Romaniello

• 2019: ‘‘Multireference Quasiparticles for strong correlation ”, LabEx NEXT; PIs: P. Romaniello and P.-F. Loos

• 2018: ‘‘Photoemission Spectra from Quantum Monte Carlo and Many-Body Perturbation Theory: The best of both worlds ”, ANR 2018; PI: Pina Romaniello

• 2016: ‘‘Unified quantum theory of spin and charge dynamics”, IDEX ‘‘Emergence 2015”; PIs: J.A. Berger and P. Romaniello

• 2012: ‘‘Unified theory of spin and charge dynamics”, LabEx NEXT; PIs: Pina Romaniello and J.A. Berger

• 2012: ‘‘Correlation in density matrix functional theory : new approximations from Green’s function- based methods” doctoral school Sciences de la Matière of the University of Toulouse; PI: Pina Romaniello

Skip to content
Logo LPT
Privacy Overview

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.