MANGHI Manoel

Professor, Toulouse University

manoel.manghi(at)irsamc.ups-tlse.fr

+33 5 61 55 61 77

326

  • My research focuses on issues at the frontier between soft matter physics and physics of living matter.
  • I teach mathematical tools, statistical physics, soft matter and physics of living matter at Toulouse University.
  • I am involved in several comities such as the Toulouse University’s research commission and Academic council, and the Commission National des Universités 29.

 

My research focuses on issues at the frontier between soft matter physics and physics of living matter. The techniques used are varied and range from analytical approaches using statistical field theory, Gaussian variational approaches, transfer matrices, scaling laws, stochastic dynamics, hydrodynamic equations to Brownian dynamics or Monte Carlo numerical simulations. [numbers corresponding to publication]

Modeling phenomena at the physics/biology interface

  • interactions induced by undulation fluctuations of lipid membranes between lipid domains [12, 27, 43] and between membranes stacked on a substrate [18]
  • lipid and/or protein domains at the cellular scale [48, 55]
  • role of recycling in nano-domain formation [35]
  • elongation of protein domains, the case of HIV receptors [52]
  • methodology for the detection of protein domains [39]
  • surface tension of fluctuating vesicles [37]
  • DNA compaction by “crowders” [57]
  • modeling chromatin dynamics in vivo

Physics of DNA and polyelectrolytes

  • electrostatic contribution to the persistence length of flexible polyelectrolytes [9]
  • model of DNA denaturation coupling the base-pair pairing state and the elastic properties of the chain [13, 14, 16].
  • consequences of this coupling on the statistical properties of two-dimensional DNA [17] and on force-extension curves [24]
  • effect of methylation on DNA conformation [32]

  • dynamics of denaturation bubble closure and opening [23, 26, 28, 33, 47]
  • DNA in the “Tethered Particle Motion” geometry: comparison between experiments and simulations [21, 46], effect of a local bent (A-tracts) sequence [29], influence of ionic strength [31, 44] and temperature [38] on its conformations

Theory of complex charged liquids

  • ion exclusion near dielectric interfaces in electrolytes: variational theory including ionic correlations [19] and excluded volume interactions [34]

  • ionic capillary evaporation in cylindrical nanopores [20, 22]
  • ionic transport through nanopores [30, 36, 42, 51, 53, 54]
  • solvation of ions at interfaces [25, 49]

Hydrodynamics at low Reynolds numbers

  • propulsion by a rotating semi-flexible filament [10]
  • coupling between hydrodynamic interactions and elastic deformations [10, 11]
  • DNA transport in microfluidics [41, 45]

Statistical physics of polymers at interfaces

  • variational approach describing the statistical physics of loops formed by adsorbed polymers at solid and fluid interfaces [7, 8]
  • application to the variation of surface tension of polymer melts and semi-diluted solutions as a function of polymerization index. Comparison with experiments [1, 2, 4, 5]— polymer brushes on concave surfaces [3]
  • mobile polymer connectors [6]
  • adsorption of polyelectrolytes from semi-diluted solutions [15]

Ph.D. students

Collaborators in Toulouse

Collaborators in France and abroad

Preprints

Articles published in international peer-reviewed journals

  • 55 M. Manghi, P. Rousseau, Q. Bédel, S. Vicente, K. Boubekeur, E. Le Floch, N. Destainville, C. Tardin,
    Crowders-induced compaction of multi-kbp long DNA molecules followed by TPM
    Macromolecules (2025)
  • 55 J. Cornet, N. Coulonges, W. Pezeshkian, M. Penissat-Mahaut, S.-J. Marrink, N. Destainville, M. Chavent, M. Manghi,
    There and back again : bridging meso- and nanoscales to understand lipid vesicle patterning
    Soft Matter 20, (2024) 4998-5013 open access   arxiv:2401.05785
  • 54 T. Hennequin, M. Manghi, A. Noury, F. Henn, V. Jourdain, J. Palmeri,
    Influence of the Quantum Capacitance on Electrolyte Conductivity through Carbon Nanotubes
    Journal of Physical Chemistry Letters 15, (2024) 2177-2183 online arxiv:2307.12071
  • 53 A. Mejri, N. Arroyo, G. Herlem, J. Palmeri, M. Manghi, F. Henn, F. Picaud,
    Impact of Single-Walled Carbon Nanotube Functionalization on Ion and Water Molecule Transport at the Nanoscale
    Nanomaterials, 14, (2024) 117
  • 52 J. Cornet, P. Preira, L. Salomé, B. Lagane, N. Destainville, M. Manghi, F. Dumas,
    Protein overexpression can induce the elongation of cell membrane nanodomains
    Biophysical Journal122 (2023) 2112-2124 arxiv:2109.09360
  • 51 A. Mejri, G. Herlem, F. Picaud, T. Hennequin, J. Palmeri, M. Manghi,
    Molecular Dynamics investigations of ionic conductance at the nanoscale : role of the water model and geometric parameters
    Journal of Molecular Liquids, 351, (2022) 118575
  • 50 M. Manghi, J. Palmeri, F. Henn, A. Noury, F. Picaud, G. Herlem, V. Jourdain,
    Ionic conductance of carbon nanotubes : confronting literature data with nanofluidic theory
    The Journal of Physical Chemistry C 125, (2021) 22943-22950
  • 49 T. Hennequin, M. Manghi, J. Palmeri,
    Competition between Born solvation, dielectric exclusion, and Coulomb attraction in spherical nanopores
    Physical Review E 104, (2021) 044601 arxiv:2104.14824
  • 48 J. Cornet, N. Destainville, M. Manghi,
    Domain formation in bicomponent vesicles induced by composition-curvature coupling
    Journal of Chemical Physics 152, (2020) 244705 arxiv:2003.01417
  • 47 F. Sicard, N. Destainville, P. Rousseau, C. Tardin, M. Manghi,
    Dynamical control of denaturation bubble nucleation in supercoiled DNA minicircles
    Physical Review E 101 (2020) 012403 arxiv:1805.04287 abstract
  • 46 M. Manghi, N. Destainville, A. Brunet,
    Statistical physics and mesoscopic modeling to interpret tethered particle motion experiments
    Methods 169, (2019) 57-68 abstract
  • 45 M. Socol, H. Ranchon, B. Chami, A. Lesage, J.-M. Victor, M. Manghi, A. Bancaud,
    Contraction and tumbling dynamics of DNA in shear flows under confinement induced by transverse viscoelastic forces
    Macromolecules 52, (2019) 1843-1852 hal-02076283
  • 44 S. Guilbaud, L. Salomé, N. Destainville, M. Manghi, C. Tardin,
    Dependence of DNA persistence length on ionic strength and ion type
    Physical Review Letters 122, (2019) 028102 arxiv:1810.01611
  • 43 N. Destainville, M. Manghi, J. Cornet,
    A rationale for mesoscopic domain formation in biomembranes
    Biomolecules 8, (2018) 104 arxiv:1807.07317
  • 42 M. Manghi, J. Palmeri, K. Yazda, F. Henn, V. Jourdain,
    Role of charge regulation and flow slip on the ionic conductance of nanopores : an analytical approach
    Physical Review E 98, (2018) 012605
    arxiv:1712.01055 Abstract
  • 41 B. Chami, M. Socol, M. Manghi, A. Bancaud,
    Modeling of DNA transport in viscoelastic electro-hydrodynamic flows for enhanced size separation
    Soft Matter 14, (2018) 5069-5079 post-print
  • 40 C. Barde, N. Destainville, M. Manghi,
    Energy required to pinch a DNA plectoneme
    Physical Review E 97, (2018) 032412 arxiv:1710.07509 Abstract
  • 39 A. Brunet, L. Salomé, P. Rousseau, N. Destainville, M. Manghi, C. Tardin,
    How does temperature impact the conformation of single DNA molecules below melting temperature ?
    Nucleic Acids Research, 46 , (2018) 2074-208 Open access
  • 38 R. Houmadi, D. Guipouy, J. Rey-Barroso, Z. Vasconcelos, J. Cornet, M. Manghi, N. Destainville, S. Valitutti, S. Allart, L. Dupré,
    The Wiskott-Aldrich syndrome protein controls the LFA-1 nanocluster belt at the lytic synapse
    Cell Reports, 22, (2018) 979-991 Open access
  • 37 G. Gueguen, N. Destainville, M. Manghi,
    Fluctuation tension and shape transition of vesicles : renormalisation calculations and Monte Carlo simulations
    Soft Matter, 13, (2017) 6100-6117 arxiv:1706.09476
  • 36 K. Yazda, S. Tahir, T. Michel, B. Loubet, M. Manghi, J. Bentin, F. Picaud, J. Palmeri, F. Henn, V. Jourdain
    Voltage-activated transport of ions through single-walled carbon nanotubes
    Nanoscale, 9, (2017) 11976 Abstract
  • 35 M. Berger, M. Manghi, N. Destainville
    Nanodomains in biomembranes with recycling
    The Journal of Physical Chemistry B, 120, (2016) 10588-10602 arxiv:1604.04371
  • 34 B. Loubet, M. Manghi, J. Palmeri
    A variational approach to the liquid-vapor phase transition for hardcore ions in the bulk and in nanopores
    Journal of Chemical Physics, 145, (2016) 044107 arxiv:1604.05532
  • 33 M. Manghi, N. Destainville
    Review article : Physics of base-pairing dynamics in DNA
    Physics Reports (2016) 631, (2016) 1-41 doi:10.1016/j.physrep.2016.04.001 arxiv:1510.05574
  • 32 V. Cassina, M. Manghi, D. Salerno, A. Tempestini, V. Iadarola, L. Nardo, S. Brioschi, F. Mantegazza
    Effect of cytosine methylation on DNA morphology : an atomic force microscopy study
    Biochimica et Biophysica Acta 1860, (2016) 1-7 doi:10.1016/j.bbagen.2015.10.006
  • 31. A. Brunet, C. Tardin, L. Salomé, P. Rousseau, N. Destainville, M. Manghi,
    Dependence of DNA persistence length on ionic strength of solutions with monovalent and divalent salts : a joint theory-experiment study
    Macromolecules 48, (2015) 3641-3652 arxiv:1504.02666
  • 30. S. Balme, F. Picaud, M. Manghi, J. Palmeri, M. Bechelany , S. Cabello-Aguilar , A. Abou-Chaaya , P. Miele , E. Balanzat , J.-M. Janot,
    Ionic transport through sub-10 nm diameter hydrophobic nanopores : experiment, theory and simulation
    Scientific Reports, 5, (2015) 10135 Open Access
  • 29. A. Brunet, S. Chevalier, N. Destainville, M. Manghi, P. Rousseau, M. Salhi, L. Salomé, C. Tardin,
    Probing a label-free local bend in DNA by single molecule tethered particle motion
    Nucleic Acids Research (2015) 43(11) e72 Open Access
  • 28. F. Sicard, N. Destainville, M. Manghi,
    DNA denaturation bubbles : free-energy landscape and nucleation/closure rates
    Journal of Chemical Physics, 142, (2015) 034903 arxiv:1405.3867
  • 27. G. Gueguen, N. Destainville, M. Manghi,
    Mixed lipid bilayers with locally varying spontaneous curvature and bending
    European Physical Journal E, 37, (2014) 76 arxiv:1405.2207
  • 26. A.K. Dasanna, N. Destainville, J. Palmeri, M. Manghi,
    Slow closure of denaturation bubbles in DNA : twist matters
    Physical Review E, 87, (2013) 052703 arxiv:1302.1673
  • 25. L. Horvath, T.A. Beu, M. Manghi J. Palmeri,
    The vapor-liquid interface potential of (multi)polar fluids and its influence on ion solvation
    Journal of Chemical Physics, 138, (2013) 154702 arxiv:1211.6635
  • 24. M. Manghi, N. Destainville, J. Palmeri,
    Mesoscopic models for DNA stretching under force : New results and comparison with experiments
    European Physical Journal E, 35, (2012) 110 arxiv:1207.6477
  • 23. A.K. Dasanna, N. Destainville, J. Palmeri, M. Manghi,
    Strand diffusion-limited closure of denaturation bubbles in DNA
    Europhysics Letters, 98, (2012) 38002 arxiv:1203.0271
  • 22. S. Buyukdagli, M. Manghi, J. Palmeri,
    Ionic exclusion phase transition in neutral and weakly charged cylindrical nanopores
    Journal of Chemical Physics, 134, (2011) 074706 abstract arxiv:1006.3696
  • 21. S. Buyukdagli, M. Manghi, J. Palmeri,
    Ionic capillary evaporation in weakly charged nanopores
    Physical Review Letters, 105, (2010) 158103 abstract arxiv:1004.1816
  •  20. M. Manghi, C. Tardin, J. Baglio, P. Rousseau, L. Salomé, N. Destainville,
    Probing DNA conformational changes with high temporal resolution by tethered particle motion
    Physical Biology, 7, (2010) 046003 abstract arxiv:1003.0518
  • 19. S. Buyukdagli, M. Manghi, J. Palmeri,
    Variational approach for electrolyte solutions : from dielectric interfaces to charged nanopores
    Physical Review E, 81, (2010) 041601 abstract arxiv:0911.1730
  • 18. M. Manghi, N. Destainville,
    Statistical mechanics and dynamics of two supported stacked lipid bilayers
    Langmuir, 26, (2010) 4057–4068 abstract arxiv:0909.3396
  • 17. N. Destainville, M. Manghi, J. Palmeri,
    Microscopic mechanism for experimentally observed anomalous elasticity of DNA in 2D
    Biophysical Journal, 96, (2009) 4464-4469. abstract arxiv:0903.1836
  • 16. M. Manghi, J. Palmeri, N. Destainville,
    Coupling between denaturation and chain conformations in DNA : stretching, bending, torsion and finite size effects
    Journal of Physics : Condensed Matter, 21, (2009) 034104. abstract arxiv:0809.0456
  • 15. M. Manghi, M. Aubouy
    Adsorption of polyelectrolytes from semidilute solutions on an oppositely charged surface
    Physical Chemistry Chemical Physics, 10, (2008) 1697-1706. abstract cond-mat/0202045
  • 14. J. Palmeri, M. Manghi, N. Destainville,
    Thermal denaturation of fluctuating finite DNA chains : the role of bending rigidity in bubble nucleation
    Physical Review E, 77, (2008) 011913. abstract arXiv:0709.2843
  • 13. J. Palmeri, M. Manghi, N. Destainville,
    Thermal Denaturation of Fluctuating DNA Driven by bending Entropy
    Physical Review Letters, 99, (2007) 088103. abstract cond-mat/0612588
  • 12. D.S. Dean, M. Manghi,
    Fluctuation induced interactions between domains in membranes
    Physical Review E, 74, (2006) 021916. abstract cond-mat/0512013
  • 11. M. Manghi, X. Schlagberger, Y.-W. Kim, R.R. Netz
    Review article : Hydrodynamic effects in driven soft matter
    Soft Matter, 2, (2006) 653-668. abstract arxiv:1203.1409
  • 10. M. Manghi, X. Schlagberger, R.R. Netz
    Propulsion with a Rotating Elastic Nano-Rod
    Physical Review Letters, 96, (2006) 068101. abstract cond-mat/0612238
  • 9. M. Manghi, R.R. Netz
    Variational theory for a single polyelectrolyte revisited
    European Physical Journal E, 14, (2004) 67-77. cond-mat/0406059
  • 8. M. Manghi, M. Aubouy
    Short commentary : Theoretical considerations on concentrated polymer interfaces : an attempt to explain dewetting of ultra-thin films
    European Physical Journal E, 12, (2003) 459-463.
  • 7. M. Manghi, M. Aubouy
    Validity of the scaling functional approach for polymer interfaces as a variational theory
    Physical Review E, 68, (2003) 041802. cond-mat/0309315
  • 6. M. Manghi, M. Aubouy
    Mobile polymer connectors
    European Physical Journal E, 11, (2003) 243-254.
  • 5. M. Aubouy, M. Manghi, E. Raphaël
    Reply to comment
    Physical Review Letters, 87, (2001) 179602.
  • 4. M. Manghi, M. Aubouy
    Interplay of entropic and enthalpic contributions to the surface tension of polymer melts
    Advances in Colloid and Interface Science, 94, (2001) 21-31.
  • 3. M. Manghi, M. Aubouy, C. Gay, C. Ligoure
    Inwardly curved polymer brushes : concave is not like convex
    European Physical Journal E, 5, (2001) 519-530. cond-mat/0102092
  •  2. M. Manghi, M. Aubouy
    Tensioactive properties of semidilute solutions
    Macromolecules, 36, (2000) 5721-5729.
  • 1. M. Aubouy, M. Manghi, E. Raphaël
    Interfacial properties of polymeric liquids
    Physical Review Letters, 21, (2000) 4858-4861.

 

81 documents

Journal articles

  • Manoel Manghi, Philippe Rousseau, Quentin Bédel, Sylvain Vicente, Kenza Boubekeur, et al.. Crowders-Induced Compaction of Multi-kbp Long DNA Molecules Followed by TPM. Macromolecules, 2025, ⟨10.1021/acs.macromol.5c00631⟩. ⟨hal-05296175⟩
  • Alexia Pigeot, Martin Rey-Millet, Amal Zine El Aabidine, Antonio Trullo, Lea Costes, et al.. Extracellular matrix stiffness modulates nuclear lamina organisation and sets nuclear conditions for PRC2 repression. BioRxiv, 2025, ⟨10.1101/2025.09.07.674693⟩. ⟨hal-05282085⟩
  • Laure Bsawmaii, Clément Delacou, Valerii Kotok, Sébastien Méance, Koutayba Saada, et al.. Ultra-Low Noise Measurements of Ionic Transport Within Individual Single-Walled Carbon Nanotubes. Nanoscale, 2024, 16 (47), pp.21970-21978. ⟨10.1039/d4nr02941k⟩. ⟨hal-04678527v2⟩
  • Julie Cornet, Nelly Coulonges, Weria Pezeshkian, Maël Penissat-Mahaut, Hermes Desgrez-Dautet, et al.. There and back again: bridging meso- and nano-scales to understand lipid vesicle patterning. Soft Matter, 2024, 20 (25), pp.4998-5013. ⟨10.1039/D4SM00089G⟩. ⟨hal-04639946⟩
  • Théo Hennequin-Nespoulous, Manoel Manghi, Adrien Noury, Francois Henn, Vincent Jourdain, et al.. Influence of the Quantum Capacitance on Electrolyte Conductivity through Carbon Nanotubes. Journal of Physical Chemistry Letters, 2024, 15 (8), pp.2177-2183. ⟨10.1021/acs.jpclett.3c03248⟩. ⟨hal-04234607⟩
  • Alia Mejri, Nicolas Arroyo, Guillaume Herlem, John Palmeri, Manoel Manghi, et al.. Impact of Single-Walled Carbon Nanotube Functionalization on Ion and Water Molecule Transport at the Nanoscale. Nanomaterials, 2024, 14 (1), pp.117. ⟨10.3390/nano14010117⟩. ⟨hal-04411217⟩
  • Julie Cornet, Pascal Preira, Laurence Salomé, Frédéric Daumas, Bernard Lagane, et al.. Protein overexpression can induce the elongation of cell membrane nanodomains. Biophysical Journal, 2023, 122 (11), pp.2112-2124. ⟨10.1016/j.bpj.2022.12.009⟩. ⟨hal-04166760⟩
  • Alia Mejri, Kamel Mazouzi, Guillaume Herlem, Fabien Picaud, Théo Hennequin-Nespoulous, et al.. Molecular Dynamics investigations of ionic conductance at the nanoscale: role of the water model and geometric parameters. Journal of Molecular Liquids, 2022, 351, pp.118575. ⟨10.1016/j.molliq.2022.118575⟩. ⟨hal-03590631⟩
  • Manoel Manghi, John Palmeri, Francois Henn, Adrien Noury, Fabien Picaud, et al.. Ionic Conductance of Carbon Nanotubes: Confronting Literature Data with Nanofluidic Theory. Journal of Physical Chemistry C, 2021, 125 (42), pp.22943-22950. ⟨10.1021/acs.jpcc.1c08202⟩. ⟨hal-03360790⟩
  • Théo Hennequin-Nespoulous, Manoel Manghi, John Palmeri. Competition between Born solvation, dielectric exclusion, and Coulomb attraction in spherical nanopores. Physical Review E : Statistical, Nonlinear, and Soft Matter Physics, 2021, 104 (4), pp.044601. ⟨10.1103/PhysRevE.104.044601⟩. ⟨hal-03350648⟩
  • Julie Cornet, Nicolas Destainville, Manoel Manghi. Domain formation in bicomponent vesicles induced by composition-curvature coupling. The Journal of Chemical Physics, 2020, 152 (24), pp.244705. ⟨10.1063/5.0006756⟩. ⟨hal-02959873⟩
  • François Sicard, Nicolas Destainville, Philippe Rousseau, Catherine Tardin, Manoel Manghi. Dynamical control of denaturation bubble nucleation in supercoiled DNA minicircles. Physical Review E , 2020, 101 (1), pp.012403. ⟨10.1103/PhysRevE.101.012403⟩. ⟨hal-02468189⟩
  • Manoel Manghi, Nicolas Destainville, Annaël Brunet. Statistical physics and mesoscopic modeling to interpret tethered particle motion experiments. Methods, 2019, 169, pp.57 – 68. ⟨10.1016/j.ymeth.2019.07.006⟩. ⟨hal-03488930⟩
  • Marius Socol, Hubert Ranchon, Bayan Chami, Antony Lesage, Jean-Marc Victor, et al.. Contraction and Tumbling Dynamics of DNA in Shear Flows under Confinement Induced by Transverse Viscoelastic Forces. Macromolecules, 2019, 52 (4), pp.1843-1852. ⟨10.1021/acs.macromol.8b02184⟩. ⟨hal-02076283⟩
  • Sébastien Guilbaud, Laurence Salomé, Nicolas Destainville, Manoel Manghi, Catherine Tardin. Dependence of DNA Persistence Length on Ionic Strength and Ion Type. Physical Review Letters, 2019, 122 (2), pp.028102. ⟨10.1103/PhysRevLett.122.028102⟩. ⟨hal-02024889⟩
  • Nicolas Destainville, Manoel Manghi, Julie Cornet. A Rationale for Mesoscopic Domain Formation in Biomembranes. Biomolecules, 2018, 8 (4), pp.104-. ⟨10.3390/biom8040104⟩. ⟨hal-01887526⟩
  • Manoel Manghi, John Palmeri, Khadija Yazda, François Henn, Vincent Jourdain. Role of charge regulation and flow slip in the ionic conductance of nanopores: An analytical approach. Physical Review E , 2018, 98 (1), pp.012605. ⟨10.1103/PhysRevE.98.012605⟩. ⟨hal-01844602⟩
  • Bayan Chami, Marius Socol, Manoel Manghi, Aurélien Bancaud. Modeling of DNA transport in viscoelastic electro-hydrodynamic flows for enhanced size separation. Soft Matter, 2018, 14 (24), pp.5069-5079. ⟨10.1039/C8SM00611C⟩. ⟨hal-01915345⟩
  • Céline Barde, Nicolas Destainville, Manoel Manghi. Energy required to pinch a DNA plectoneme. Physical Review E , 2018, 97 (3), pp.032412. ⟨10.1103/PhysRevE.97.032412⟩. ⟨hal-01774951⟩
  • Annaël Brunet, Laurence Salomé, Philippe Rousseau, Nicolas Destainville, Manoel Manghi, et al.. How does temperature impact the conformation of single DNA molecules below melting temperature?. Nucleic Acids Research, 2018, 46 (4), pp.2074-2081. ⟨10.1093/nar/gkx1285⟩. ⟨hal-01743602⟩
  • Raïssa Houmadi, Delphine Guipouy, Javier Rey-Barroso, Zilton Vasconcelos, Julie Cornet, et al.. The Wiskott-Aldrich Syndrome Protein Contributes to the Assembly of the LFA-1 Nanocluster Belt at the Lytic Synapse. Cell Reports, 2018, 22 (4), pp. 979-991. ⟨10.1016/j.celrep.2017.12.088⟩. ⟨hal-01709075⟩
  • Khadija Yazda, Said Tahir, Thierry Michel, Bastien Loubet, Manoel Manghi, et al.. Voltage-activated transport of ions through single-walled carbon nanotubes. Nanoscale, 2017, 9 (33), pp.11976-11986. ⟨10.1039/c7nr02976d⟩. ⟨hal-01586169⟩
  • Guillaume Gueguen, Nicolas Destainville, Manoel Manghi. Fluctuation tension and shape transition of vesicles: renormalisation calculations and Monte Carlo simulations. Soft Matter, 2017, 13 (36), pp.6100-6117 ⟨10.1039/C7SM01272A⟩. ⟨hal-01618861⟩
  • Mareike Berger, Manoel Manghi, Nicolas Destainville. Nanodomains in Biomembranes with Recycling. Journal of Physical Chemistry B, 2016, 120 (40), pp.10588-10602. ⟨10.1021/acs.jpcb.6b07631⟩. ⟨hal-01401489⟩
  • Bastien Loubet, Manoel Manghi, John Palmeri. A variational approach to the liquid-vapor phase transition for hardcore ions in the bulk and in nanopores.. The Journal of Chemical Physics, 2016, 145 (4), pp.044107. ⟨10.1063/1.4959034⟩. ⟨hal-01360415⟩
  • Manoel Manghi, Nicolas Destainville. Physics of base-pairing dynamics in DNA. Physics Reports, 2016, 631, pp.1-41. ⟨10.1016/j.physrep.2016.04.001⟩. ⟨hal-01335016⟩
  • Sebastien Balme, Fabien Picaud, Manoel Manghi, John Palmeri, Mikhael Bechelany, et al.. Ionic Transport through Uncharged Nanopores. Biophysical Journal, 2016, 110 (3), pp.655a. ⟨10.1016/j.bpj.2015.11.3504⟩. ⟨hal-01696373⟩
  • Valeria Cassina, Manoel Manghi, Domenico Salerno, Alessia Tempestini, Veronica Iadarola, et al.. Effects of cytosine methylation on DNA morphology: An atomic force microscopy study. BBA – Biochimica et Biophysica Acta, 2016, 1860 (1), pp.1-7. ⟨10.1016/j.bbagen.2015.10.006⟩. ⟨hal-01254700⟩
  • Sébastien Balme, Fabien Picaud, Manoel Manghi, John Palmeri, Mikhael Bechelany, et al.. Ionic transport through sub-10 nm diameter hydrophobic high-aspect ratio nanopores: experiment, theory and simulation. Scientific Reports, 2015, 5, pp.10135. ⟨10.1038/srep10135⟩. ⟨hal-01162029⟩
  • Annaël Brunet, Catherine Tardin, Laurence Salomé, Philippe Rousseau, Nicolas Destainville, et al.. Dependence of DNA Persistence Length on Ionic Strength of Solutions with Monovalent and Divalent Salts: A Joint Theory–Experiment Study. Macromolecules, 2015, 48 (11), pp.3641-3652. ⟨10.1021/acs.macromol.5b00735⟩. ⟨hal-01174944⟩
  • Annaël Brunet, Sébastien Chevalier, Nicolas Destainville, Manoel Manghi, Philippe Rousseau, et al.. Probing a label-free local bend in DNA by single-molecule Tethered Particle Motion. Nucleic Acids Research, 2015, 43 (11), pp.e72. ⟨10.1093/nar/gkv201⟩. ⟨hal-01174058⟩
  • François Sicard, Nicolas Destainville, Manoel Manghi. DNA denaturation bubbles: Free-energy landscape and nucleation/closure rates. The Journal of Chemical Physics, 2015, 142 (3), pp.034903. ⟨10.1063/1.4905668⟩. ⟨hal-01136054⟩
  • Guillaume Gueguen, Nicolas Destainville, Manoel Manghi. Mixed lipid bilayers with locally varying spontaneous curvature and bending. European Physical Journal E: Soft matter and biological physics, 2014, 37 (8), pp.76. ⟨10.1140/epje/i2014-14076-3⟩. ⟨hal-01123758⟩
  • Anil K. Dasanna, Nicolas Destainville, John Palmeri, Manoel Manghi. Slow closure of denaturation bubbles in DNA: twist matters. Physical Review E : Statistical, Nonlinear, and Soft Matter Physics, 2013, 87, pp.052703. ⟨10.1103/PhysRevE.87.052703⟩. ⟨hal-00822680⟩
  • Lorand Horvath, Titus Beu, Manoel Manghi, John Palmeri. The vapor-liquid interface potential of (multi)polar fluids and its influence on ion solvation. The Journal of Chemical Physics, 2013, 138, pp.154702. ⟨10.1063/1.4799938⟩. ⟨hal-00806295⟩
  • Manoel Manghi, Nicolas Destainville, John Palmeri. Mesoscopic models for DNA stretching under force: new results and comparison with experiments. European Physical Journal E: Soft matter and biological physics, 2012, 35, pp.110. ⟨10.1140/epje/i2012-12110-2⟩. ⟨hal-00745436⟩
  • Anil K. Dasanna, Nicolas Destainville, John Palmeri, Manoel Manghi. Strand diffusion-limited closure of denaturation bubbles in DNA. EPL – Europhysics Letters, 2012, 98, pp.38002. ⟨10.1209/0295-5075/98/38002⟩. ⟨hal-00702529⟩
  • Sahin Buyukdagli, Manoel Manghi, John Palmeri. Ionic exclusion phase transition in neutral and weakly charged cylindrical nanopores. The Journal of Chemical Physics, 2011, 134 (7), pp.074706. ⟨10.1063/1.3526940⟩. ⟨hal-00559647⟩
  • Sahin Buyukdagli, Manoel Manghi, John Palmeri. Ionic Capillary Evaporation in Weakly Charged Nanopores. Physical Review Letters, 2010, 105 (15), pp.158103. ⟨10.1103/PhysRevLett.105.158103⟩. ⟨hal-00559645⟩
  • Sahin Buyukdagli, Manoel Manghi, John Palmeri. Variational approach for electrolyte solutions: from dielectric interfaces to charged nanopores. Physical Review E : Statistical, Nonlinear, and Soft Matter Physics, 2010, 81 (4), pp.041601. ⟨10.1103/PhysRevE.81.041601⟩. ⟨hal-00439698⟩
  • Catherine Tardin, Manoel Manghi, Julien Baglio, Laurence Salome, Nicolas Destainville. Influence of the Experimental Set-Up on Single Molecule DNA Dynamics When Analyzed by Tethered Particle Motion. Biophysical Journal, 2010, 98 (3, Supplement 1), pp.184a. ⟨10.1016/j.bpj.2009.12.985⟩. ⟨hal-00983532⟩
  • Manoel Manghi, Nicolas Destainville. Statistical mechanics and dynamics of two supported stacked lipid bilayers. Langmuir, 2010, 26 (6), pp.4057-4068. ⟨10.1021/la903504n⟩. ⟨hal-00469060⟩
  • Manoel Manghi, C. Tardin, J. Baglio, P. Philippe Rousseau, L. Salome, et al.. Probing DNA conformational changes with high temporal resolution by tethered particle motion.. Physical Biology, 2010, 7 ((4)), pp.046003. ⟨10.1088/1478-3975/7/4/046003⟩. ⟨hal-00557866⟩
  • Manoel Manghi, John Palmeri, Nicolas Destainville. Coupling between denaturation and chain conformations in DNA: stretching, bending, torsion and finite size effects. Journal of Physics: Condensed Matter, 2009, 21 (3), pp.034104. ⟨10.1088/0953-8984/21/3/034104⟩. ⟨hal-00316382⟩
  • Nicolas Destainville, Manoel Manghi, John Palmeri. Microscopic mechanism for experimentally observed anomalous elasticity of DNA in two dimensions. Biophysical Journal, 2009, 96 (11), pp.4464-4469. ⟨10.1016/j.bpj.2009.03.035⟩. ⟨hal-00417510⟩
  • John Palmeri, Manoel Manghi, Nicolas Destainville. Thermal denaturation of fluctuating finite DNA chains: the role of bending rigidity in bubble nucleation. Physical Review E : Statistical, Nonlinear, and Soft Matter Physics, 2008, 77 (1), pp.011913. ⟨10.1103/PhysRevE.77.011913⟩. ⟨hal-00173154⟩
  • Manoel Manghi, Miguel Aubouy. Adsorption of polyelectrolytes from semi-dilute solutions on an oppositely charged surface. Physical Chemistry Chemical Physics, 2008, 10, pp.1697. ⟨10.1039/b716014c⟩. ⟨hal-00316403⟩
  • John Palmeri, Manoel Manghi, Nicolas Destainville. Thermal Denaturation of Fluctuating DNA Driven by Bending Entropy. Physical Review Letters, 2007, 99, pp.088103. ⟨10.1103/PhysRevLett.99.088103⟩. ⟨hal-00123812⟩
  • Manoel Manghi, Xaver Schlagberger, Yong-Woon Kim, Roland R. Netz. Hydrodynamic effects in driven soft matter. Soft Matter, 2006, 2, pp.653-668. ⟨10.1039/b516777a⟩. ⟨hal-00123837⟩
  • Manoel Manghi, Xaver Schlagberger, Roland R. Netz. Propulsion with a Rotating Elastic Nanorod. Physical Review Letters, 2006, 96, pp.068101. ⟨10.1103/PhysRevLett.96.068101⟩. ⟨hal-00123818⟩
  • David S. Dean, Manoel Manghi. Fluctuation induced interactions between domains in membranes. Physical Review E : Statistical, Nonlinear, and Soft Matter Physics, 2006, 74, pp.021916. ⟨10.1103/PhysRevE.74.021916⟩. ⟨hal-00123839⟩
  • Manoel Manghi, Roland R. Netz. Variational theory for a single polyelectrolyte chain revisited. European Physical Journal E: Soft matter and biological physics, 2004, 14, pp.67-77. ⟨10.1140/epje/i2004-10007-3⟩. ⟨hal-00123826⟩
  • Manoel Manghi, Miguel Aubouy. Validity of the scaling functional approach for polymer interfaces as a variational theory. Physical Review E , 2003, 68 (4), pp.041802. ⟨10.1103/PhysRevE.68.041802⟩. ⟨hal-00123855⟩
  • Manoel Manghi, Miguel Aubouy. Mobile polymer connectors. European Physical Journal E: Soft matter and biological physics, 2003, 11, pp.243-254. ⟨10.1140/epje/i2003-10017-7⟩. ⟨hal-00123867⟩
  • Manoel Manghi, Miguel Aubouy, Cyprien Gay, Christian Ligoure. Inwardly curved polymer brushes : Concave is not like Convex. European Physical Journal E: Soft matter and biological physics, 2001, 5, pp.519-530. ⟨10.1007/s101890170035⟩. ⟨hal-00123861⟩
  • Manoel Manghi, Miguel Aubouy. Interplay of entropic and enthalpic contributions to the surface tension of polymer melts. Advances in Colloid and Interface Science, 2001, 94 (1-3), pp.21-31. ⟨10.1016/S0001-8686(01)00052-5⟩. ⟨hal-04709613⟩
  • Manoel Manghi, Miguel Aubouy. Tensioactive properties of semidilute polymer solutions. Macromolecules, 2000, 33, pp.5721-5729. ⟨10.1021/ma000099u⟩. ⟨hal-00123908⟩
  • Miguel Aubouy, Manoel Manghi, Elie Raphaël. Interfacial properties of polymeric liquids. Physical Review Letters, 2000, 21, pp.4858-4861. ⟨10.1103/PhysRevLett.84.4858⟩. ⟨hal-00123903⟩

Conference papers

  • Théo Hennequin-Nespoulous, Manoel Manghi, John Palmeri. Ionic transport through metallic and semiconducting carbon nanotubes. 17ème Journées de la Matière Condensée (JMC) 2021, La Société Française de Physique (SFP), Aug 2021, Rennes, France. ⟨hal-04901870⟩
  • Manoel Manghi, Théo Hennequin-Nespoulous, John Palmeri. Transport of ions through hydrophobic nanopores. 11th LIQUID MATTER CONFERENCE 2020/2021, Czech Academy of Sciences and J. E. Purkinje University under the auspicies of the European Physical Society, Jul 2021, Prague (CZ), Czech Republic. ⟨hal-04901962⟩
  • François Henn, Guillaume Herlem, Vincent Jourdain, Amine Kribeche, Bastien Loubet, et al.. Ions and water transport through µm-long single-walled carbon Nanotubes. Frontier in ion channel and nanopores: theory, experiments & simulation, Alberto Giacomello (Sapienza University of Rome); Carlo Guardiani (Sapienza University of Rome); Antonio Tinti (Sapienza University of Rome), Feb 2021, Rome, Italy. ⟨hal-04895055⟩
  • Julie Cornet, Matthieu Chavent, Manoel Manghi, Nicolas Destainville. Monte Carlo and Molecular Dynamics Simulations to Explain Biomembrane Meso-Patterning by a Composition-Curvature Coupling Mechanism. 64th Annual Meeting of the Biophysical Society, Jan 2020, SanDiego (CA), United States. pp.186a, ⟨10.1016/j.bpj.2019.11.1133⟩. ⟨hal-02537855⟩
  • Manoel Manghi, John Palmeri, Bastien Loubet. Influence of chemical and geometrical modifications on nanopore conductivity. PHYSICS OF MEMBRANE PROCESSES (PMP2018), Sep 2018, Bologna, Italy. ⟨hal-01947454⟩
  • Francois Henn, Khadija Yazda, Said Tahir, Thierry Michel, Bastien Loubet, et al.. Electrolyte transport through single−walled carbon nanotubes. JOURNÉES DE LA MATIÈRE CONDENSÉE 2018 (JMC2018), Aug 2018, Grenoble, France. ⟨hal-01947964⟩
  • Manoel Manghi, John Palmeri, Bastien Loubet. Theoretical insights of electrolyte transport in nanopores. JOURNÉES DE LA MATIÈRE CONDENSÉE 2018 (JMC2018), Aug 2018, Grenoble, France. ⟨hal-01947449⟩
  • Khadija Yazda, Said Tahir, Thierry Michel, Bastien Loubet, Manoel Manghi, et al.. Transport of ions in solution through single-walled carbon nanotubes. Chemontubes 2018, Apr 2018, Biarritz, France. ⟨hal-01910272⟩
  • Manoel Manghi, Bastien Loubet, John Palmeri. Theory and experiments on ionic transport through hydrophobic nanopores. STRONGLY COUPLED COULOMB SYSTEMS (SCCS) 2017, Jul 2017, Kiel, Germany. ⟨hal-01947438⟩
  • Khadija Yazda, Said Tahir, Thierry Michel, Bastien Loubet, Manoel Manghi, et al.. Voltage-activated ionic transport through single-walled carbon nanotubes. NT17, Jul 2017, Belo Horizonte, Brazil. ⟨hal-01910269⟩
  • Manoel Manghi, Bastien Loubet, John Palmeri. Modeling dielectric exclusion effects in ionic transport through hydrophobic nanopores. Modeling Symposium, Membranes in Drinking and Industrial Water Production (MDIW2017)), Feb 2017, Leeuwarden, Netherlands. ⟨hal-01947285⟩
  • Khadija Yazda, Thierry Michel, Said Tahir, Fabien Picaud, Bastien Loubet, et al.. Voltage-Activated Ion Transport through Single-Walled Carbon Nanotubes. MRS Fall Meeting, Nov 2016, Boston, United States. ⟨hal-01910265⟩
  • Manoel Manghi, Bastien Loubet, John Palmeri, Fabien Picaud, Sebastien Balme. Ionic transport through hydrophobic nanopores: theory and experiments. Stat Phys 26, Jul 2016, Lyon, France. ⟨hal-01947940⟩
  • John Palmeri, Manoel Manghi. Théorie du transport ionique en milieux nanoporeux chargé. MATÉRIAUX 2014, Nov 2014, Montpellier, France. ⟨hal-01947933⟩
  • John Palmeri, Manoel Manghi. Polarizable ion and colloid distributions near dielectric interfaces: A unified treatment of thermal and quantum dispersion (van der Waals) forces. 88th ACS Colloids and Surface Science Symposium, Jun 2014, Philadelphia, United States. ⟨hal-01947921⟩
  • Anil K. Dasanna, Manoel Manghi, Nicolas Destainville, John Palmeri. Closure of DNA denaturation bubbles coupled to chain elasticity. 9th EBSA European Biophysics Congress, Jul 2013, Lisbon, Portugal. pp.S200-S200. ⟨hal-00984415⟩
  • Manoel Manghi, John Palmeri, Nicolas Destainville. DNA bubbles and bending: how conformational fluctuations modify base pairing. 8th EBSA European Biophysics Congress, August 23rd-27th 2011, Budapest, Hungary, Aug 2011, Budapest, Hungary. pp.111. ⟨hal-00983559⟩

Poster communications

  • Vincent Jourdain, Khadija Yazda, Saïd Tahir, Thierry Michel, Bastien Loubet, et al.. Ohmic and voltage-actived transport of ions through single-walled carbon nanotubes. NT19: International Conference on the Science and Application of Nanotubes and Low-Dimensional Materials, Jul 2019, Würzburg, Germany. . ⟨hal-04894925⟩
  • Khadija Yazda, Said Tahir, Thierry Michel, Jean-Baptiste Thibaud, Bastien Loubet, et al.. Transport of ions and molecules inside carbon nanotubes : towards the detection of individual biomolecule. 5ème Journées Scientifiques du LabEx NUMEV, Oct 2016, Montpellier, France. ⟨hal-01950212⟩
  • Sebastien Balme, Fabien Picaud, Manoel Manghi, John Palmeri, Mikhael Bechelany, et al.. Ionic transport through high aspect-ratio sub-10 nm diameter hydrophobic nanopores. Selective transport through nanopores: physics meets biology, Mar 2015, Lenzerheide, Switzerland. ⟨hal-01948445⟩
  • Manoel Manghi, Anil K. Dasanna, Nicolas Destainville, John Palmeri. Closure dynamics of DNA denaturation bubbles governed by torsional elasticity. Liquids 2014 (9th Liquid Matter Conference), Jul 2014, Lisbon, Portugal. ⟨hal-01948377⟩
  • Manoel Manghi, Anil K. Dasanna, Nicolas Destainville, John Palmeri. DNA twist and bending govern the denaturation bubble slow dynamics. Soft Matter 2013, Sep 2013, Rome, Italy. ⟨hal-01948354⟩

Theses

  • Manoel Manghi. Contributions théoriques à l’étude des polymères aux interfaces. Analyse de données, Statistiques et Probabilités [physics.data-an]. Université Joseph-Fourier – Grenoble I, 2002. Français. ⟨NNT : ⟩. ⟨tel-00002111⟩

2010 Habilitation à Diriger des Recherches, Statistical physics of biological objects and electrolytes at interfaces, LPT, Univ. P. Sabatier, Toulouse.

since 02/2005 Associate Professor, LPT, Université Toulouse III -Paul Sabatier

09/2004-01/2005 Postdoctoral contract CNRS Laboratoire de Physique Théorique et Astroparticules, Montpellier

2002-2004 Postdoctoral contract in the group of Prof. R.R. Netz, Ludwig Maximilian University, Munich. Research grant from the German Alexander von Humboldt Foundation

1999-2002 Ph.D. thesis in theoretical physics, Theoretical contributions to the study of polymers at interfaces, Laboratoire Structures et Propriétés des Architectures Macromoléculaires, Université J. Fourier, Grenoble.

1995-1999 Student of the École Normale Supérieure de Lyon, France

1998 Agrégé de sciences physiques, physics option.

 

Teaching

  • PFA-PMV Master 1 coordinator: Physics and Mechanics for Living Systems

The aim of this Master’s program is to train high-level students in biophysics, physical chemistry, soft matter, imaging physics and the physics of societal behavior, so that they are able to tackle biological problems using the tools of physics. These tools are now widely used in the life sciences, both to observe and study living organisms (microscopy, data analysis, trajectory tracking, etc.) and to model and understand the physical mechanisms behind biological phenomena. The PFA-PMV Master’s program covers the different scales of life, from the molecular scale (DNA, membranes, etc.) to the population scale (ants, fish, humans, etc.), via the cellular scale (bacteria, etc.) and biological tissues (epithelium, blood, etc.).

Master 1 is followed by a Master 2 in Physics and Mechanics for Living Systems.

More informations at this web page

  • M2 Fundamental Physics (PFIQMC) course Critical phenomena and phase transitions
  • M2 PMV course Bio-polymers, bio-membranes and single particle physics (with N. Destainville)
  • M1 PMV course Biophysics 1 and Biophysics 2 (with N. Destainville and W. Ahmed)
  • M1 course Soft Matter (with E. Dantras)
  • Licence course Statistical Physics
  • BioMIP8 course Energy and entropy in Biology (for students in Biology)
  • At preparing year for students preparing for the Agrégation competitive examination of Toulouse University: statistical physics, fluid mechanics, oral presentations
  • Mathematics for Physics (special Licence first year)

As coordinator

  • GENDYN, Research project of the COMUE Toulouse University TIRIS Scaling Up (2024-2028), 312k€, Elucidating chromosome dynamics in vivo by trajectory analyses and Brownian dynamics, involved teams: LPT, CBI-MCD
  • MobiGen Interdisciplinary doctoral grant Toulouse University-Occitanie region (2022) Genome Dynamics (with Kerstin Bystricky)
  • StatPhysChrom, Research project of the NanoX Labex, call for proposal Emergence (2021-2024), 25k€, The bacterial nucleoid: from statistical physics models to the synthetic prokaryotic chromosome, involved teams:  LPT, IPBS, LMGM, LIPhy (Grenoble)
  • Interdisciplinary CNRS Challenge INFINITI (2018), 5k€, Lipid membranes: Connecting numerical simulations at the lipid scale with continuous theoretical models of fluctuating vesicles

As partner or participant

  • ANR IONESCO (2019-2022), Coupling ionic and electronic transport in single wall carbon nanotubes Coordinator: François Henn (Laboratoire Charles Coulomb L2C, Montpellier)
  • ANR TRANSION (2013-2017), ION TRANSport within biological ion channels confined in nanopores: experimental and theoretical approaches Coordinator: François Henn (Laboratoire Charles Coulomb L2C, Montpellier)
  • ANR TPM-on-a-chip (2012-2015), TPM-on-a-chip : High-throughput analysis of DNA conformational changes by Tethered Particle Motion on a single-molecule chip, Coordinator: Laurence Salomé (IPBS, Toulouse)
  • ANR SIMONANONEM (2007-2011), Simulation and Modeling of the transport across Polymeric Nanoporous Membranes prepared by self-assembly of block copolymers, Coordinator: John Palmeri (LPT)

Highlights

How quantum properties control electrolyte transport in carbon nanotubes?

How salting DNA makes it more flexible

Influence of the ionic strength on the persistence length of the double-stranded DNA for monovalent metallic (Li+, Na+, K+, red symbols) and divalent (Mg2+, Ca2+, Pu2+, blue symbols) ions, adjusted by curves from recent theories taking into account non-linear electrostatic effects and the finite diameter of dsDNA.

The rigidity of double-stranded DNA plays a major role in the structuring of the chromosome and thus the expression of genes, as well as in nanotechnology where DNA is used as a building block. But, how is this rigidity influenced by the presence of different types of ions? In this work, teams from the IPBS and the LPT in Toulouse responded both experimentally and theoretically to this question.

Thanks to the massive parallelization of the single-molecule technique of Tethered Particle Motion (TPM), they measured the dependence of persistence length, reflecting the stiffness of the polymer DNA, over a wide range of ions and salt concentrations. They demonstrated a unique decay for monovalent or divalent metal ions perfectly described by recent theories, which take into account the non-linear electrostatic effects as well as the finite diameter of the DNA. This study will thus make it possible to predict conformational changes of complex structures formed by DNA both in vitro and in vivo.

Reference: S. Guilbaud, L. Salomé, N. Destainville, M. Manghi, and C. Tardin, Dependence of DNA Persistence Length on Ionic Strength and Ion Type. Physical Review Letters, 122, 028102 (2019).

 

One of our articles discussing DNA stretching by an applied force has been highlighted in epj.org.

Why DNA denaturation bubble closure is so long?

A.K. Dasanna, N. Destainville, J. Palmeri and M. Manghi from the LPT have studied theoretically the mechanism of DNA denaturation bubbles closure and shown that chain bending and strand diffusion are at the origin of the long closure times measured experimentally.

In the course of DNA transcription, denaturation bubbles (DNA segments where base-pairs are broken) are nucleated in DNA and an important issue concerns the closure time of such DNA « bubbles ». Experiments have measured suprisingly long closure times in the range of 20 to 100 microseconds for small bubbles of length around 20 base-pairs.

Closure dynamics of a denaturation bubble

Using Brownian dynamics simulations and analytical arguments, it is shown that the closure of a pre-equilibrated bubble (a) occurs in two steps. The first step consists in a fast zipping of the initial bubble until a metastable bubble state of length around 10 base-pairs is reached (b). The driving force for this fast kinetics is the energetic gain in base-pair closure, which becomes forbidden at some point by the large bending stored in the bubble. The closure of this metastable state is then controlled by the rotational diffusion of the two stiff arms (c). For real DNAs, the closure time is found to scale as N^2.4 for DNA lengths N between 20 and 100.

Reference: A.K. Dasanna, N. Destainville, J. Palmeri and M. Manghi, Strand diffusion-limited closure of denaturation bubbles in DNA, Europhysics Letters 98, 38002 (2012)

Why DNA chains are “kinked” when observed on surfaces? (DNA elastic properties on surfaces differ from ones in solution)

Atomic Force Microscopy (AFM) is widely used to observe double-stranded DNA adsorbed on surfaces. In recent experiments by Wiggins et al., « anomalies » have been detected in the distribution of bending angles along DNA (which measures its flexibility) : an over-abundance of large angles were found which are not predicted by the traditional statistical model of DNA chains, the Worm-Like Chain model (see figure). N. Destainville, M. Manghi and J. Palmeri explained these anomalies by the presence of small denaturation bubbles (or kinks) facilitated by the presence of the substrate which modifies interactions between DNA base-pairs. They predict that these anomalies exist in 3D but are too weak to be detected and reconcile the apparent discrepency between observed 2D and 3D elastic properties. Hence, conclusions about 3D properties of DNA (and its companion proteins and enzymes) do not directly follow from 2D experiments by AFM.

Snapshot of a DNA observed by AFM. The experimental bending angle distribution (symbols) is plotted for three different values of the distance along the chain. It shows a deviation from the Worm Like Chain model (parabola) for large angles which is well fitted by the theory (solid line). A sketch of DNA adsorbed on a 2D charged mica surface and dried in air is shown, highlightening the substantial modification of DNA base-pair states by the experimetal setup compared to 3D in solution..

Reference: Microscopic mechanism for experimentally observed anomalous elasticity of DNA in 2D by N. Destainville, M. Manghi and J. Palmeri, Biophysical Journal 96, 4464 (2009) arxiv0903.1826

DNA bubbles and bending : how conformational fluctuations modify its thermal denaturation

The denaturation of the DNA polymer is a physical process in the course of which the double strand, or helix, can open locally thanks to thermal fluctuations. An opening of successive base pairs creates a denaturation bubble. Within a bubble the two fluctuating single strands have a bending rigidity 50 times weaker than that of the unopened helix. It follows that at a given temperature, DNA can explore a much larger number of geometrical configurations when in the bubble state and therefore increase its conformational entropy. In this way, it can also have a higher local curvature, for example when wrapped around a histone. The external DNA geometry will in turn influence the bubble creation process. This mutual influence naturally leads to a theoretical model coupling the local internal DNA states (open or closed base pairs) and the local curvature of the DNA chain.

Fraction of open base pairs as a function of temperature for simple synthetic DNA, composed of 1815 base pairs [one strand is made up of one type of base, adenine (A), and the other, thymine (T)]. The symbols correspond to experimental data and the theoretical curve is fitted with only two adjustable parameters. Typical configurations of double stranded DNA are schematized for different temperatures, showing the different “stages” of its denaturation. Close to the melting temperature, where the fraction is equal to 0.5, we have shown a configuration with a denaturation bubble near the center of the polymer.
We have formulated such a coupled DNA model and solved it exactly using standard tools of statistical physics. This internal-external coupling, which was not previously taken into account in DNA physics modelling, allows one to address and answer a whole class of still open problems in this field. For example, it permits one to calculate as a function of microscopic parameters the denaturation, or melting, temperature above which the double strand tends to a completely open state. In contrast, this temperature was introduced into most previous statistical models of DNA denaturation by hand in order to analyse experimental results. Our coupled model can also be used to both calculate the typical size of DNA, or radius of gyration, as a function of temperature (whether rigid or crumpled) and account for finite size effects that are all important even for DNA polymers as long as several thousand base pairs. Understanding the physics of DNA, and more particularly denaturation bubbles, is an important challenge for biology, because a large number of biological mechanisms, like compaction, replication, transcription, and protein pinning, intimately depend on it.

Reference: Thermal Denaturation of Fluctuating DNA Driven by Bending Entropy published in J. Palmeri, M. Manghi, and N. Destainville, Physical Review Letters 99, 088103 (2007).

How to reproduce bacterial propulsion in a biomimetic way ?

Projected views of the flagella before (rigid state A) and after the bifurcation (helical state B)

By coupling the elastic properties of a rotative semi-flexible nanorod and hydrodynamic interactions, which are the source of propulsion in Stokes flows, we have shown theoretically that bacterial propulsion can be reproduced in a biomimetic way. Moreover, this work sheds light on the major role played by elasticity in flagellar motion of bacteria as E. coli.

Bacterial flagella of are helical stiff polymers set in motion at their base by a rotary motor. Using Brownian dynamics simulations with full hydrodynamic interactions which take into account momentum diffusion in Stokes flow, we show that a simple straight elastic nanorod which rotates around a point undergoes at a critical torque a strongly discontinuous shape bifurcation to a helical state. It thus gives rise to a substantial forward thrust regardless of its sense of rotation. Hence, in a biomimetic context, it makes usage of helical polymer unnecessary, allowing a selection from the much wider class of straight stiff polymers. Moreover, these elastic effects could explain some observations made on E. coli, such as the polymorphic transformations of their flagella.

Reference: M. Manghi, X. Schlagberger, R.R. Netz, Propulsion with a Rotating Elastic Nanorod, Physical Review Letters, 96068101 (2006)

Administrative responsibilities

First Aid at work (Sauveteur Secouriste du Travail SST)

Skip to content
Logo LPT
Privacy Overview

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.