3 octobre 2025
Partager

Exact result for the free energy of a Bose gas

How does the low-temperature free energy of one-dimensional interacting quantum liquids behaves beyond the standard temperature-squared correction, a well-known result from conformal field theory? A recent study of  Zoran Ristivojevic of the Laboratory of Theoretical Physics in Toulouse and his collaborator Miłosz Panfil from the University of Warsaw published in Physical Review Letters, addresses this question.

Quantum integrable gases are distinguished by the presence of stable quasiparticles, whose distribution governs the thermodynamic properties of the system. In the Lieb-Liniger model, describing the one-dimensional bosons with contact interaction, at zero temperature, this distribution resembles a Fermi sea possessing a non-zero curvature near the Fermi edges that carries the particularities of the model. In the published work, the exact, non-perturbative relations between the curvature and the thermodynamics of the gas at low temperatures are established, enabling the calculation of the first nontrivial temperature correction. It scales with the fourth power of the temperature. As a result, the heat capacity acquires the curvature. Interestingly, the curvature vanishes at a particular value of the interaction strength, marking the crossover from concave to convex behavior. The obtained results are experimentally accessible, as the quasi-particle distribution can be directly probed in cold atom setups, and could be useful for future precision measurements in quantum gases.

Reference: Miłosz Panfil and Zoran Ristivojevic, Local Properties of the Rapidity Distribution in the Lieb-Liniger Model, Phys. Rev. Lett. 135, 020408 (2025).

Aller au contenu principal
Logo LPT
Résumé de la politique de confidentialité

Ce site utilise des cookies afin que nous puissions vous fournir la meilleure expérience utilisateur possible. Les informations sur les cookies sont stockées dans votre navigateur et remplissent des fonctions telles que vous reconnaître lorsque vous revenez sur notre site Web et aider notre équipe à comprendre les sections du site que vous trouvez les plus intéressantes et utiles.
En cliquant sur "Accepter", vous acceptez l'utilisation de cookies en provenance de ce site ainsi que notre politique de confidentialité.